~ D@

Center for Human-Machine Systems Research

School of Industrial and Systems Engineering, Georgia Institute of Technology
Atlanta, Georgia 30332-0205

3 986
\WWMM\M\II\

Knowledge Organization in Intelligent Tutoring
Systems for Diagnostic Problem Solving in
Complex Dynamic Domains

Vijay Vasandani and T. Govindaraj
& v ti-—:bri 1993}
Technical Report CHMSR-93- 1 ,- |

September 1993

93-30542
\\IIYI\I&II\MI\WII\|\|\|ll|i|i|\lI\l||l

Reproduction in whole or in part is permitted for any purpose of the United States Government.

This research was supported by the Navy Manpower, Personnel, and Training R&D Program
of the Office of the Chief of Naval Research under Contract N0O0014-87-K-0482.

Approved for public release; distribution unlimited.

98 12 16002

REPOR™ DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

1993 September

Technical

3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE
Knowledge Organization in Intelligent Tutoring Systems for Diagnostic
Problem Solving in Complex Dynamic Domains

6. AUTHOR(S)

Vijay Vasandani and T. Govindaraj

S. FUNDING NUMBERS

C: N00014-87-K-0482
PE: 0602233N
PR: RM33M20

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Georgia Institute of Technology

Center for Human-Machine Systems Research
School of Industrial and Systems Engineering
765 Ferst Drive, Atlanta, GA 30332-0205

8. PERFORMING ORGANIZATION
REPORT NUMBER

CHMSR-93-1

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Office of Naval Research

Cognitive Science Program (Code 1142CS)
800 North Quincy Street
Arlington, VA 22217-5000

10. SPONSORING/MON!TORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

Program.

Supported by the Office of the Chief of Naval Research Manpower, Personnel, and Training R&D

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

lator, Turbinia, is based on a hierarchical representation of subsystems,
Vyasa is the computer-based tutor that teaches the troubleshooting task

ing system.

Turbinia-Vyasa is a computer-based instructional system that trains operators to troubleshoot and di-
agnose faults in marine power plants. It is implemented on Apple Macintosh II computers. The simu-

components, and primitives.
using Turbinia. The simula-

tor, an interactive, direct manipulation interface, and the tutor (with its expert, student, and instructional
modules) comprise the architecture for the instructional system. In this paper, we discuss the details of
knowledge organization that supports the functions of the three major elements of the intelligent tutor-

14. SUBJECT T.ERMS_
graphical interfaces; knowledge representation; fault diagnosis; training;

maintenance; intelligent tutoring systems; intelligent computer assisted

instruction; interactive learning environments; marine power plants; simulation

15. NUMBER OF PAGES

51

18. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED

20. LIMITATION OF ABSTRACT

NSN 7540-01-280-5500

Standard Form 298

Knowledge Organization in Intelligent Tutoring Systems for
Diagnostic Problem Solving in Complex Dynamic Domains g

v.announced 0
) .)) Justitication
Vijay Vasandani and T. Govindaraj i —————"
B
Center for Human-Machine Systems Research Di}{ h o i S

School of Industrial and Systems Engineering U
Georgia Institute of Technology Lo e e e
Atlanta, Georgia 30332-0205, USA

+1 404 894 3873, tg@chmsr.gatech.edu
(Address all correspondence to TG.)

| e
Dist ’/“‘;ij
Abstract ﬁ'/ }

Turbinia-Vyasa is a computer-based instructional system that trains operators to troubleshoot
and diagnose faults in marine power plants. It is implemented on Apple Macintosh II computers.
The simulator, Turbinia, is based on a hierarchical representation of subsystems, components, and
primitives. Vyasa is the computer-based tutor that teaches the troubleshooting task using Turbin-
ia. The simulator, an interactive, direct manipulation interface, and the tutor (with its expert, stu-
dent, and instructional modules) comprise the architecture for the instructional system. In this
paper, we discuss the details of knowledge organization that supports the functions of the three ma-
jor elements of the intelligent tutoring system.

Introduction

Human operators of highly automated systems such as aircrafts and steam power plants must be
capable of managing the systems both under normal conditions and in the presence of system mal-
functions. Typically, the operators are presented with vast quantities of information concerning the
system state. They must combine this information with external inputs from the environment and
determine the courses of action. Even though computers and automatic control systems are gener-
ally employed for information processing in real time, complete automation based on fully auton-
omous systems is neither possible nor desirable. There is currently no substitute for human
judgement and knowledge to set high level system goals, monitor system states, and intervene and
compensate for problems that the automated control systems are unable to handle. Therefore, it is
essential that human operators are skilled in planning and problem solving (Rasmussen 1986,
Woods 1986; Wickens 1984; Rouse 1982; Sheridan & Johannsen 1976).

Operators’ ability to diagnose faults and take appropriate corrective actions promptly is highly de-
sirable. Typically, an operator identifies a malfunctioning components by observing abnormal
states of the system, forming hypotheses about failure based on her mental models of what is nor-
mal and abnormal, and verifying each hypothesis by conducting diagnostic tests. Operators often
find it difficult to develop appropriate mental models that describe the causal behavior in such sys-
tems.

The diagnostic problem solving task is often complicated by the size, interactions and dynamics of
the system. Size refers to the number of components in the system. An increase in size increases
the probability of failure in the system and makes troubleshooting difficult by increasing the alter-
natives that can explain the observed abnormal system behavior. Interaction between parts of the
system and the propagation of abnormal system behavior makes diagnosing faults difficult.

Success in fault diagnosis depends upon the operator’s use of system knowledge at multiple levels
of abstraction and detail (Rasmussen 1985). Efficiency of diagnosis is enkanced by timely compi-
lation, integration and organization of operational information and system knowledge. During di-
agnosis, operators must combine symptom information with mental resources concerning system
knowledge (Govindaraj 1988). Cognitive aspects of diagnostic problem solving such as the inte-
gration of the system state information with mental models can benefit from appropriate training.
A training program should help organize system knowledge and operational information, including
symptom-cause relationships.

Training for diagnostic problem solving can be provided on-the-job or on simulators (Johnson
1988; Kearsley 1987; Goldstein 1986; Bureau of Naval Personnel 1957; Naval Training Command
1973). On-the-job training is usually very expensive and the consequences of an error can be cat-
astrophic. Malfunctions occur infrequently and it may be undesirable or impossible to duplicate
them during training. Systems that can simulate a wide range of failure conditions offer a good al-
ternative training environment. However, simulators by themselves are unable to provide appropri-
ate help since they cannot evaluate a student’s misconceptions from observed actions. A simulator
coupled with an intelligent, computer-based tutor can provide effective training based on an eval-
uation of a student’s misconceptions from observed actions. Such a combination of simulator and
tutor constitutes an intelligent tutoring system (ITS).

Research on intelligent tutoring and training systems has traditionally been concerned with impart-
ing basic skills in mathematics, electricity, physics and computer programming (Wenger 1987, Sl-
eeman & Brown 1982). These domains lack the complex interactions between subsystems that are
characteristic of most engineering domains. Due to the inability to represent complexity, most ITS
design principles have not been successfully extended from simpler, less constrained domains to
complex engineering systems (Burns, Parlett & Redfield 1991; Frasson & Gauthier 1990; Psotka,
Massey & Mutter 1988). Suitable methodologies for representing the system complexity are lack-
ing.

The inability to represent system complexity stems primarily from the lack of a methodology to
decompose and organize knowledge about large dynamic systems. We have developed a method-
ology that addresses the representation problem by decomposing, organizing and representing do-
main knowledge of complex dynamic systems for building functional, computer-based intelligent
tutors. We separate the domain knowledge from pedagogical knowledge. Domain knowledge is
further decomposed into system and troubleshooting task knowledge.

System knowledge at different levels is organized into a structure-function-behavior model. Trou-

bleshooting task knowledge is organized to facilitate evaluation of student misconceptions. The or-
ganization of pedagogical knowledge assists in planning of pedagogical functions including
inference of misconceptions and delivery of instructions using a blackboard-like control architec-
ture.

The methodology for decomposing, organizing and representing knowledge is suitable for engi-
neering domains (e.g., power plants, aircrafts, automobiles etc.) characterized by large size, high
degree of interaction between subsystems and complex dynamics. The diagnostic task involves the
identification of a malfunctioning component based on observed abnormal system behavior. Lim-
ited availability of gauges constrains the operators from observing all abnormal system bebaviors.

We have implemented an experimental instructional system for a marine power plant. The instruc-
tional system comprises of a simulator and a tutor. A large number of failure conditions are simu-
lated. The tutor is designed to improve the student’s troubleshooting skills by providing practice
and exposure to realistic situations.

In the next section, we provide a brief review of the general architecture of intelligent instructional
systems. The problem in extending the existing ideas to a wider range of domains and the goals of
current research are outlined. In the section that follows, which forms the core of this paper, we
describe a methodology for organizing knowledge and an instructional system architecture that
uses this methodology. We then describe the student-tutor interface. An experimental evaluation of
the training system is presented next. Finally, we conclude with a discussion of the results and some
observations.

Intelligent Tutoring In Complex Systems

Background

Even though research on intelligent tutoring systems has been in progress for over two decades,
only a small fraction of the research deals with engineering domains. Surveys of intelligent tutoring
systems can be found in (Sleeman & Brown 1982; Wenger 1987; Psotka, Massey & Mutter 1988;
Frasson & Gauthier 1990; and Bums, Parlett & Redfield 1991).

SOPHIE, designed to teach troubleshooting in electrical circuits, was perhaps one of the first [TSs
in an engineering domain (Brown, Burton & de Kleer 1982). Since SOPHIE, a great deal of
progress has been made in computer-based training for electronic troubleshooting. The SHER-
LOCK family of tutors (Lajoie & Lesgold 1990; Lesgold 1990a; Lesgold 1990b; Lesgold et
al.1991), developed for a complex electronic troubleshooting job in the Air Force, has a far richer
representation of the work environment than SOPHIE. Intelligent Maintenance Training System
(IMTS) and its successors provide interactive environments for constructing domain-specific sim-
ulations and training scenarios for a wide variety of domains including electronics (Towne & Mu-
nro 1988). Finally, in the domain of marine steam power plant, we have developed ITSs.

SHERLOCK provides students with realistic means of practicing the task with context- specific

support and feedback. Instead of imposing a particular troubleshooting strategy it provides help
that is relevant to the current performance of the students when an impasse is reached. In addition,
a model of the student’s competence and performance gives SHERLOCK the capability to provide
personalized instructions.

Intelligent Maintenance 'i'raining System (IMTS) provides an interactive environment for con-
structing domain-specific simulations and training scenarios (Towne & Munro 1988). For instance,
IMTS has been used to develop a maintenance training program for SH-3 Helicopter Bladefold
System. The Helicopter Bladefold System is a moderately complex, electrically controlled hydrau-
lic system. The maintenance training program uses Profile, a generic troubleshooting expert of
IMTS, to aid operators in improving their diagnostic performance. The techniques for assessing
and supporting the student’s performance in this training program, along with the ones used in
SHERLOCK, are the most extensive among all existing systems.

Another example from a complex system domain is MACH-III (Massey, de Bruin & Roberts 1988)
used to train maintenance operators of HAWK radar systems to troubleshoot complex electronic
devices at tactical installations. This system uses model-based qualitative reasoning techniques to
generate explanations of normal and faulty radar operations for use in training.

In domains such as power plants, ITS research on operator training has produced STEAMER (Hol-
lan, Hutchins & Weitzman 1984), The Recovery Boiler Tutor (Woolf 1986), and AHAB (Fath,
Mitchell & Govindaraj 1990). STEAMER does not teach any specific task. Instead, it uses innova-
tive graphical techniques to display the behavior of portions of the power plant. STEAMER has
neither the means to evaluate the needs of the students nor can it provide help upon request to im-
prove the student’s understanding of the power plant. Thus, it is not really an intelligent tutoring
system although it provides powerful graphical interfaces for interactive inspection of simulated
faults in steam power plants.

The Recovery Boiler Tutor simulates the thermal and chemical processes in the boiler unit of a

power plant. It has knowledge of boiler operating procedures for normal and emergency situations.
The tutor uses this knowledge to teach the steps involved in controlling the situations arising from
emergencies. The tutor also provides the students with the facility to interact with the simulator and
stop the boiler processes to engage in activities needed to improve the understanding of the system.

AHAB addresses the complexities of a power plant such as size and interactions between sub-
systems better than any other training system in its domain. Using qualitative approximation
(Govindaraj 1987) for simulation and knowledge representation, and a discrete control model
(Miller 1985; Mitchell & Miller 1986) of the operator’s task, AHAB teaches symptomatic and to-
pographic search strategies (Rasmussen 1986) for troubleshooting. It assists the student using con-
text-specific symptomatic and topographic diagnostic tests and evaluates the performance of the
student based on deviations from the strategy prescribed by its task model.

The rest of this section is divided into three parts. First, we identify the major constituents of the

instructional system architecture. Important characteristics of each constituent are discussed next.
Finally, we identify the characteristics desired in a tutoring system for complex systems.

General Architecture of ITS

In general, all intelligent tutoring systems have a similar architecture (see “Tutor” in Figure 1),
comprised of an expert module, a student module and an instructional module. In addition, a sim-
ulator provides the training environment. The expert module contains the domain expertise which
is also the knowledge to be taught to the student. The student module contains a model of the stu-
dent’s current level of competence. The instructional module is designed to sequence instructions
and tasks based on the information provided by the expert and student models. Also, the interface
used to communicate knowledge to the student can be treated as a separate component of these sys-
tems. Together with the simulator and an interactive interface, the three components of the tutor
(i.e., the expert, student, and instructional modules) comprise the architecture for the instructional
system.

Domain Simulator

Simulator Interface

Student
Student
Module
Instructional
Module
Expert
Module
Tutorial Interface Tutor

Figure 1. Major Components of Instructional System

The expert module is the heart of the [TS and provides the domain intelligence and expertise. The
domain knowledge refers to the subject matter as it relates to the task for which it will be used. It
is not limited to procedures for executing the task and includes material that provides the founda-
tion and justification for the application of procedures. Thus, domain knowledge is of two types:
declarative and procedural (Anderson 1988; Charniak & McDermott 1985; Nilsson 1980; Rich
1983; Winston 1980). Whereas declarative knowledge refers to objects in the domain, facts about
them and their interrelationship, procedural knowledge refers to set of compiled rules for executing
the task.

The student module in an ITS maintains a model of the student’s current understanding of the do-
main. The student model is uscd to evaluate the student’s need and help the instructional module
in preparing appropriate individualized instructions. It stores actions taken by the student and has
some means of representing the student’s knowledge derived from recorded actions. Representa-
tion of data in such a student model must facilitate its comparison with the expert model of the task
to enable evaluation of misconceptions in the student.

The instructional module of an ITS is responsible for several activities. Its primary function is to
control the curriculum, that is, select the material to be presented and its form of presentation. In
addition, the instructional module evaluates student’s misconceptions based on observed actions.
To achieve these objectives, the instructional module makes use of pedagogical rules pertaining to
presentation methods, query response and conditions for tutorial intervention. It also incorporates
an algorithm that facilitates comparison of knowledge in the expert and student models and a
framework for evaluating misconceptions based on this comparison.

Domain Simulator and Interactive Interface

In complex real world systems, it is often impossible to generate situations merely for the purpose
of training. Therefore, in spite of being costly and labor extensive, simulators provide the only
practical alternative for any training program. Although simulators have, in the past, been used
alone to provide instructions (Towne 1986), these simulators by themselves lack the ability to eval-
uate student misconceptions. However, these simulators are an important part of any training pro-
gram and, when coupled with computer-based tutors, enhance the effectiveness of an instructional
system.

A good interface makes the knowledge of the tutor transparent to the student and helps the student
understand the complex structure, function, and behavior of the controlled system. In addition, a

well designed interface addresses the external-internal task mapping problem (Moran 1983) and

establishes a semantic link between the actions relevant to the task in the domain and the actions

to be taken at the interface (Miller 1988).

Extensions to complex systems

The difficulties in the implementation of ITSs in complex real-world systems domains arises due
to: (1) a lack of simulation techniques, and (2) the difficulty in organizing knowledge. Simulators

must have at least moderate levels of dynamic, structural and temporal fidelity (Su 1985; Su &
Govindaraj 1986). For most real-world systems, due to their shear size and complexity of processes
and interactions involved, developing such a training environment is rather tedious. In the absence
of an appropriate tool that supports rapid construction of these training environments, the task of
building large simulators is made even more difficult. Environments such as RAPIDS and it suc-
cessors (Munro & Towne 1993 (in press)) should help in overcoming this problem. Moreover, con-
structing simulators is computationally expensive. In an ITS, it is extremely important to conserve
its computational resources for the tutor rather than consume it on the simulator. While the shortage
of computational resources should not be a problem in the future, due to the rapid pace of advances
in computer technology, there is still a need to explore techniques for rapid construction of training
environments for instructional systems.

The second problem, that of organizing knowledge, is the focus of our research described in this
paper. ITSs must represent knowledge in multiple levels of detail and abstraction. For most real-
world systems, this makes the volume of knowledge to be represented overwhelming. Furthermore,
this knowledge is interrelated and tightly coupled, and therefore cannot be stored as isolated mod-
ules. Knowledge must be integrated into proper contexts to assist in the development of good men-
tal models. A framework that can help integrate the large volume of knowledge associated with the
safe operation of real-world systems is needed.

In this paper, we describe a methodology for organizing knowledge. (An earlier, brief, version ap-
pears as (Vasandani & Govindaraj 1993 (in press))). Specifically, we describe a methodology for

decomposing, organizing and representing system and task knowledge of a large complex dynamic
system. Knowledge is organized to facilitate its use in intelligent instructional systems. Results of
our research provides a pragmatic approach for extending the applications of ITS to real-world sys-
tems. Details of knowledge organization are discussed next.

Knowledge Organization
General

Organization of knowledge determines the intelligence of a training system. Absence of systematic
organization of knowledge adversely affects the effectiveness of a computer-based tutor. In an ef-
fective ITS, the domain knowledge must be separated from teaching knowledge and made explicit.
Having explicit domain knowledge makes it easily accessible and communicable to the student.
Separation of knowledge also makes it possible for the tutor to present the domain knowledge in
more than one way. This allows an ITS to function with more flexibility and present instructional
material in different styles.

For a large, complex, dynamic, real-world system, the problems related to the knowledge and its
representation in an instructional system are two-fold. First, the volume of knowledge is enormous.
Second, its organization is critical for the success of the instructional system. Both the type and

organization of knowledge in an instructional system also varies with the distribution of teaching

and learning responsibility between the student and the tutor (Rickel 1989). Tutors that attempt to
maintain a balance of control between the student and the tutor (i.e., mixed-initiative tutors) have
the largest amount of structured knowledge as compared to tutor-dominated traditional computer-
aided instructional programs or student-dominated discovery learning environments (Sleeman &
Brown 1982; Wenger 1987; Psotka, Massey & Mutter 1988). Thus, a consistent knowledge orga-
nization methodology can not only increase the pace of progress by cutting down on the develop-
ment time but also ensure effectiveness of the instructional system.

We begin with a brief discussion of the simulator, and knowledge requirements for diagnostic prob-
lem solving. A methodology for decomposing and systematically organizing knowledge concern-
ing complex dynamic systems follows. This methodology provides a framework for decomposing
knowledge into smaller and easily comprehensible units for use in instructional systems. Imple-
mentation details are discussed later.

Simulation Via Qualitative Approximation

We use qualitative approximation for the design of moderate fidelity simulators. Basic principles
of this approach were developed in (Govindaraj 1987). In qualitative approximation, the system
states are represented by qualitative measures such as “pressure low” and “flow rate has been
steadily decreasing.” Exact numerical values are not used. Such qualitative state representation aids
the operator involved in troubleshooting by eliminating the need to compare observed state values
to nominal values. Also, large systems can be simulated with a moderate amount of computational
power due to reduced computational requirements.

A hierarchical description of the system is employed. System components are grouped into a num-
ber of subsystems based on their function. For instance, an oil-fired steam power plant on a ship is
comprised of the following primary subsystems: fuel oil, feed water, steam, lube oil, and control
air. Some components might belong to more than one subsystem. For example, the condenser is
part of the feed water subsystem as well as the steam subsystem. Components are classified into a
number of generic types, which are then broken down into a small number of primitives. A con-
denser as well as an economizer, therefore, can be classified as heat-exchangers. This is a rather
simple arrangement of the hierarchy based on the physical nature of components that form the sys-
tem.

Knowledge Requirements for diagnostic problem solving

The knowledge required includes nominal values of the state variables and parameters, and opera-
tional principles of different types of system, e.g., thermodynamics and heat transfer for the fuel
system, or electrical characteristics for a turbogenerator. Problem solving and compensation for
failures require processing of information from various subsystems using efficient troubleshooting
strategies. Therefore, an ITS must be capable of organizing and presenting knowledge about the
system and the troubleshooting task at several levels of granularity or detail.

Four components of knowledge are necessary in an intelligent tutor for diagnostic problem solving

in complex dynamic domains. These components are: (1) a large amount of system knowledge or-
ganized to facilitate evolution of system states with time, (2) troubleshooting task knowledge, in-
cluding knowledge about failures and student actions, (3) knowledge to infer a student’s possible
misconceptions from observed actions, and (4) pedagogical knowledge to realize the tutoring ob-
jectives.

Knowledge about the system and the troubleshooting strategies constitute an expert model of the
operator’s task. This knowledge must be organized in a manner that is easily accessible and com-
municable to the student. The instructional module uses this model to train students to use proper
diagnostic problem solving strategies. Knowledge of student’s actions can help the instructional
module to infer possible misconceptions. Finally, knowledge of tutoring goals and how they are to
be realized guides the instruction and its communication. In what follows, we describe a frame-
work for decomposing and organizing knowledge. Figure 2 summarizes the components of knowl-
edge. Each of the components is described next.

Pedagogical
knowledge

Knowledge to
odel student action

Instructional
knowledge to rectify
misconceptions &
provide help

Knowledge to
evaluate
misconceptions

Failure
modes (generic)

| Content]L Form

Troubleshooting
task knowledge

Specific
schemas etc.

] [l'lmelduratiori

Figure 2. Summary of Knowledge Components

System Knowledge

Successful fault diagnosis in complex dynamic domains is aided by multiple representations of the
system’s functional properties (Rasmussen 1986). The expert model must therefore have access to
multiple representations of the system knowledge. Schematics, functional subsystems and fluid
paths are three possible means of representing the system knowledge. A schematic is a pictorial
representation of the components in the system. A functional subsystem is a collection of compo-

nents responsible for a higher level system function. Fluid paths help in visualizing the system in
terms of different fluids that flow through the system. The three representations are complementary
rather than mutually exclusive. Since schematics are collections of components organized by phys-
ical or logical connectivity, a particular schematic may contain several subsystems and fluid paths.
A detailed description of schematics, functional subsystems and fluid paths is provided next.

Schematics

A schematic presents a view into the structure of the system. Typically, a schematic shows the se-
quence in which certain components and gauges appear in a real system. It is also a structure that
reveals the logical proximity of two physically unconnected components such as the burner and the
stack in a combustion unit. A configuration of all components either responsible for a higher level
function or sharing a common fluid is vet another example of a schematic.

During diagnostic problem solving, schematics are typically used to view the configuration of com-
ponents and gauges. Scanning through the various schematics permits an operator to visualize the
sequence of system processes as they occur in the system. In a steam power plant, for example, the
schematics may display the stages of power generation in a sequence starting with the combustion
of fuel, followed by steam generation, steam condensation and preheating of condensed steam for
re-use in a closed loop water circuit. The operator’s interaction with the system during a trouble-

shooting task involves probing gauge readings in the suspected areas of failure through schematics.

Grouping of components in schematics may depend upon some other factors such as frequency of
interaction and level of dependency. There are parts of a system that commonly interact with each
other. For instance, in a power plant, the performance of a steamn generation unit is affected by the
performance of the combustion unit. Hence, the steam generation unit and the combustion unit are
displayed in a single schematic. Certain parts of a system do not significantly affect other parts of
the system and thus are viewed in isolation. For example, problems related to lubrication are usu-
ally confined to lube oil path and rarely affect other fluid paths, unless left unattended for a long
time. Finally, there are some failures in a system that occur more frequently than others. Compo-
nents and gauges required for investigating such failures are confined, as far as possible, to a single
schematic.

Functional subsystems

Functional subsystems are collections of components responsible for achieving specific higher lev-
el system functions. There are several higher level system functions that collectively contribute to
the system goals. For instance, in a marine power plant, the functions are combustion, steam gen-
eration, power generation, steam condensation, feed water preheating, auxiliary steam use, saltwa-
ter service, lubrication and control air distribution.

A functional subsystem is described by information related to (1) fluid paths passing through the
subsystem; (2) components through which a given fluid flows; (3) the order in which the compo-
nents and gauges appear in each fluid path; (4) the connected subsystem on either side of the fluid

10

path; and (5) the schematic in which the subsystem may be found.
Fluid paths

In decomposing a system by fluid paths, all components on the same fluid path are represented in
a group. Additional system knowledge based on fluid paths consists of (1) schematics in which the
fluid is found, and (2) the subsystems through which the fluid flows. Examples of fluid paths in
steam power plants are combustion air, fuel oil, superheated steam, feed water and saltwater.

Components

Each of the three system representations described above involves mechanical components and
gauges. The lowest level of description of system knowledge is hence at the component level. Sys-
tem knowledge at the component level has three attributes: structure, function and behavior.

A component’s structure, for the most part, refers to its connections to other components on the
input and output side, the fluids carried by it, the gauges attached to it, and its association to a sche-
matic or a functional subsystem. Functional knowledge about a component is its intended use in
the system and its contribution to the higher level functions of the system. Knowledge of a compo-
nent’s behavior concerns its states. Since the behavior of a component is different under normal
and failed modes, the behavior knowledge, like the structural knowledge, is different for the two
modes.

Together, the structural, functional and behavior knowledge of a system and its components form
an essential part of the expert’s knowledge. Structural, functional and behavior knowledge are dis-
cussed next.

Structural knowledge

Most of the structural information for components is the same in normal and failed states. The
structural information that remains invariant after a failure includes its connectivity relationship to
other components, the fluids flowing through it, and its association to a particular subsystem and
schematic. When a component fails, some structural information changes. For example, a valve
with its control set to the open position but its blade stuck in the closed position represents a struc-
tural change for a valve when it is blocked shut. Such structural changes for failed components wiil
be discussed later as a part of “troubleshooting task knowledge.”

Functional knowledge

Functional information defines the purpose or role of a component in the system. Functional
knowledge of a component depends upon its structure. For example, a pipe in the system may be
modeled as a conduit, where the function of a conduit is to transport moving fluid from one of its
ends to another. In an approximate representation, where friction may be ignored, it is reasonable
to define the function of the conduit in the manner described above.

In general, a number of primitive function types, like the conduit, can be identified for a system.
All the components of the system can be categorized as instances of one of the primitive types. For

11

continuous systems, examples of primitives based on functions include sink, source, source-sink,
gain, controller, reactor, transducer, heat-exchanger and phase-changer.

Behavior knowledge

Normal and failed modes of a component affect the system differently. The manner in which the
system state values are affected by the presence of a component, in both the normal and the failed
states, constitutes the component behavior knowledge.

Normal behavior of components is responsible for normal state values during system operation.
For example, normal behavior of the main condenser is responsible for a lower outlet temperature
of the hot medium as compared to its inlet temperature. As the hot medium moves from inlet to
outlet it undergoes a phase change from gas to liquid. The same normal behavior of the main con-
denser is also responsible for a corresponding increase in temperature of the cold medium as it
flows from its inlet to outlet port. Behavior of all components can be explained by the laws of sci-
ence, e.g., the law of conservation of energy explains the normal behavior described here.

Abnormal behavior describes the manner in which certain state values are affected by a failure in
the component. For tutoring, the behavior information for a failed component includes contextual
information about specific gauges affected by the failure. The explanations for the abnormal gauge
readings in terms of cause-effect relationships also form a part of the component behavior knowl-
edge represented in the tutor.

System knowledge, although essential, is not sufficient for the troubleshooting task. Troubleshoot-
ing task knowledge discussed next includes more than the operational knowledge uf the system and
its components.

Troubleshooting Task Knowledge

Troubleshooting task knowledge combines system knowledge and diagnostic strategies. It includes
general knowledge of the types of failures in the system, detailed information on certain common
failures, and cause-effect associations for familiar failures. The nature of this diagnostic problem
solving knowledge is described here.

A mechanical component in a physical system such as a steam power plant can fail in more than
one way. There are four common modes of failure in components: (a) blocked-shut, (b) stuck-open,
(c) leak-in, and (d) leak-out (Fath, Mitchell & Govindaraj 1990). Faults in components fit one or
more of these four mode types. Not all components, however, fail in all four different ways. Some
components have multiple faults that fit the same failure mode category. For example, a clogged
valve or a valve stuck in closed position are two different ways in which the valve may be blocked-
shut.

Each failure mode exhibits a typical system behavior (Fath, Mitchell & Govindaraj 1990). The typ-
icality of such behavior provides useful diagnostic information. If the system behavior suggests a
particular mode of failure, then the list of suspected components can be reduced to those that fail

12

in that particular mode.

The typical system behavior may depend upon the phase of the fluid in the affected path. A
blocked-shut mode of failure in a liquid path, for example, causes the liquid level downstream to
be lower than normal and the level upstream higher than normal. A similar blocked-shut failure in
a gas path, on the other hand, decreases the downstream gas pressure and increases the upstream
pressure.

In any case, system behavior associated with each mode is manifested in the form of a typical pat-
tern of abnormal state values. Patterns of such abnormal state values can be determined by the ap-
plicauion of the laws of physics and thermodynamics, and recognizing these patterns or
abnormalities during fault diagnosis often helps to identify the type of failure in the system.

System behavior associated with failure mode sometimes deviates from the expected abnormal be-
havior (Fath, Mitchell & Govindaraj 1990). The way in which the system components are config-
ured is often responsible for such a deviation. For instance, a source-sink such as a deaerating feed
tank located downstream in the blocked-shut feed water path may prevent further propagation of

low feed water level. The deaerating feed tank imposes such a behavior on the system because it is
an “infinite” source of feed water which can at least temporarily compensate for any loss in the wa-
ter level. The expected abnormal behavior associated with a mode of failure may therefore be con-
fined to the vicinity of the failed component. Furthermore, with the limited availability of gauges

around the failed component, the abnormal behavior may not be observable. Knowledge of such

deviations from the norm is essential for correct identification of the type of failure in the system.

Even when the failure mode is recognized from the system behavior, it may not be very useful. An
expert needs more than just the knowledge about modes of failure and their associated system be-
havior. However, when the expert’s troubleshooting knowledge also includes information on all
possible modes of failure for each component, it can be helpful in at least reducing the list of sus-
pected components.

Finally, to isolate the failed from the suspected components and to diagnose the fault, additional
information such as the gauges affected by the failure and causal relationship between abnormal
system states for every fault is required. Knowledge of the affected gauges and the system states
for the individual faults can provide the verification of the final diagnosis.

There are other elements of the troubleshooting knowledge, accumulated through experience, that
make fault diagnosis in a large complex system time-efficient (Govindaraj & Su 1988). This expe-
riential knowledge, based on prior cases of solved and unsolved problems encountered by the op-
erator, is usually responsible for the formation and rapid refinement of an initial set of hypotheses
of either suspected components, subsystems, or fluid paths.

Such knowledge based on cases is particularly useful when unusual problems are encountered.
While there is inadequate information to implement a full-fledged case-based reasoning system,
knowledge of known cases useful for diagnosis is incorporated in a knowledge source associated

13

with the blackboard architecture discussed later in this paper.

Experiential knowledge is activated by the observation of obvious and non-obvious (i.e., discov-
ered only upon investigation) symptoms. In a complex dynamic system, the size of the system and
the effects of fault propagation make it impossible to uniquely associate a symptom to a specific
fault. However, in such systems, observable symptoms still help to limit the search for the failed
component to a specific location in the system. For example, the symptoms may indicate that a par-
ticular higher level function of the system has been affected by the fault. This helps to confine the
search for the failed component to components comprising the subsystem responsible for the af-
fected function. Symptoms may further help to categorize the faults, for example, they may sepa-
rate those related to components with moving parts from those related to speed or load. Such a
categorization of failures further reduces the search space for a failed component. For example, a
search space generated by a set of ali components with moving parts in the combustion system of
a power plant is likely to be much smaller than the set of all components in the combustion sub-
system.

An operator’s fault diagnosis task is also aided by inferences based on failure schemas built through
experience. These failure schemas are a part of experiential knowledge. The schemas represent
some of the familiar ways in which the system fails. A schema is activated by a symptom and pro-
poses a hypothesis or a partial solution to the diagnostic problem. This is similar to the use of symp-
tomatic search during a troubleshooting task (Rasmussen 1986; see below).

The partial solution may be a diagnostic test that either provides a conclusive inference or activates
another schema. For example, smoke in a boiler may activate a schema that recommends checking
for smoke color. Black smoke may then trigger an incomplete-combustion schema while white
smoke may trigger an excessive-air-in-the-burner schema. An abnormal fuel temperature with
black smoke in the boiler may prompt the incomplete-combustion schema to specify desuperheat-
ed-steam or fuel path as the path suspected of containing the failed component.

Rasmussen (1986) has characterized the application of the troubleshooting task knowledge into
two diagnostic strategies: symptomatic and topographic search. Symptomatic search is a simple
and economical pattern matching strategy where a successful association between cause and effect
is generated based on prior experience. An unsuccessful attempt with symptomatic search usually
leads to topographic search. In topographic search, a hypothesis about the failed component is gen-
erated and tested by comparing a model of normal behavior of the suspected component with its
behavior in the abnormaily functioning system. Neither the symptomatic nor the topographic strat-
egy is adequate in itself; instead, an expert often switches between the two strategies many times
to complete the task.

We have provided an overview of an expert’s troubleshooting knowledge and the diagnostic strat-
egies. The system and the troubleshooting task knowledge discussed thus far are also normally the
representation of the material to be taught by the tutor. However, the knowledge representation suit-
able for expert performance is not necessarily suitable for instruction or for evaluating student’s

14

misconceptions (Clancey 1987). An alternative organization of the expert’s task knowledge that
may help evaluate a student’s misconceptions is required.

Knowledge of Student’s Actions

An important feature of an intelligent computer-based tutor is its ability to evaluate a student’s mis-
conceptions. This capability of the tutor evolves from a normative model of the student’s actions.
In a normative modz] of the student’s actions, not all actions that occur at the student-tutor interface
are valid. Examples of valid actions may range from requests for help to responses to queries and
calls for schematics. In addition, in diagnostic problem solving, there may be some other actions
performed by the student. These actions may include investigating components for gauges and
checking their gauge readings. An action to investigate a component may be called an investigative
action and a request to display the value of a particular gauge attached to the component an infor-
mative action. Most of the student’s actions, such as the request for help, response to query, call for
a change in schematic display and even investigative actions are self explanatory. These actions
clearly express the intent of a well-motivated learner interacting with the tutor. However, the infor-
mative actions taken during diagnostic problem solving are associated with ambiguity concering
student’s intent. We need context-specific knowledge and an understanding of the cognitive aspects
of troubleshooting task to resolve these ambiguities.

In a troubleshooting task, the student maintains a set of failure hypotheses that explain the abnor-
mal behavior of the system (Fath, Mitchell & Govindaraj 1990). A set of hypotheses is a list of
components suspected to have failed. Each informative action taken by the student is an attempt to
reduce the size of the set of failure hypotheses. The manner in which the list of suspected compo-
nents may be revised depends upon the outcome of the diagnostic test associated with the informa-
tive action. The test results have a context-specific significance. For example, in a power plant, if
the student has been alerted by a low condensate pressure alarm, it makes sense for her to check
the pressure gauge on the condensate pump. If she does check the pressure gauge on the condensate
pump, it is reasonable to assume that the condensate pump is probably one of the suspected com-
ponents. If the pressure gauge shows a low reading, the student has reason to continue suspecting
a malfunction in the condensate pump. On the other hand, if the pressure gauge reading is normal,
the condensate pump may be omitted from the list of suspected components. However, when the
student is alerted to a failure in the system by smoke in the boiler rather than a low condensate pres-
sure alarm, checking for pressure across the condensate pump is inconsistent with the failure data.
Thus, the knowledge of what are reasonable actions under various failure situations and how the
test results ought to refine the set of failure hypotheses can help in evaluating the student’s miscon-
ceptions.

A normative model of student’s actions that describes the valid actions of a student for each failure
condition can thus be used to evaluate students’ misconceptions. The knowledge required to eval-
uate misconceptions using the normative model is described next.

Knowledge to Evaluate Misconceptions

15

The normative model describes what a student ought to do under a particular failure situation.
When the student’s action does not match actions suggested by the normative model, the reason
can be attributed to many causes. Usually the causes are related to lack of knowledge, inappropriate
knowledge or deficiencies in knowledge application skills. Evaluating a student’s misconception
means determining the probable cause for the deviant behavior. While suggesting remedies may be
relatively straightforward when misconceptions are known with certainty, determining the miscon-
ception itself is a difficult task since the causes for a given misconception are often confounded.

In order to determine a student’s misconception, the tutor needs to know the types of misconcep-
tions that are associated with incomplete knowledge of the system or the task. Misconceptions can
be categorized as those related to a lack of (1) structural knowledge of the system, (2) functional

knowledge of system and components, and (3) knowledge of system behavior resulting from fail-
ures.

The lack of system structural knowledge makes the student investigate portions of the system un-
related to the failure. For example, if the abnormal system behavior in a power plant is initially ob-
served in the boiler, the student is expected to investigate gauges mounted on the boiler or on the
components in the vicinity of the boiler. If, however, the student fails to call up the schematic that
contains the boiler or struggles to locate it in the schematic, it can be attributed to inadequate
knowledge of system structure.

If, on the other hand, the student calls up the relevant schematic for investigations but checks com-
ponents and gauges in the fluid paths unaffected by the failure, it indicates a lack of understanding
of different system functions and their inter-relationships. For instance, if the observed abnormality
concerns low water level in the boiler, persistent investigations along flue gas path is unlikely to
yield any useful diagnostic information. Such an action is clearly an indication of the student’s in-
ability to integrate functional information about the boiler and the interactions between the fluid
paths through the boiler.

Finally, pursuing a hypothesis that should have been rejected based on evidence gathered, or pre-
mature elimination of suspicion from a component due to insufficient evidence, suggests shortcom-
ings in the knowledge of behavior related to failures. For example, if the pressure gauge on the
condensate pump displays a normal reading, it is unreasonable to suspect a blocked-shut mode of
failure in the condensaic pump. Continued suspicion of a component in spite of evidence available
to the contrary suggests inability on the part of the student to link failures to abnormal system be-
havior resulting from failures.

A mismatch between observed student actions and those predicted by the normative model often
implies a number of confounding of causes. Therefore, some heuristic strategies are necessary to
identify possible misconceptions and deliver individualized instructions. A rule-based knowledge
structure is used in the tutor to identify three types of misconceptions based on observed student
actions.

16

Structural misconception is inferred as the cause when the student investigates components in a
schematic unaffected by the current failure. Knowledge of schematics affected by each failure,
needed to evaluate the structural misconception, is obtained from the tutor’s knowledge of the fail-
ures.

The tutor identifies a functional misconception when the most suspected subsystem or fluid path
inferred from the student’s action is unrelated to the failure being investigated. Most suspected sub-
systems and fluid paths are determined after each student action. A count is kept of the number of
investigations made in each subsystem and fluid path. The subsystem and the fluid path with the
maximum number of investigative-actions are also the most suspected if at least one of the last
three investigations have occurred in that subsystem or fluid path. Otherwise, the most suspected
subsystem or the most suspected fluid path is the one investigated last. Thus, after every action, the
information concerning the most suspected subsystem and the most suspected fluid path in the stu-
dent model is revised. Knowledge of subsystems and fluid-paths related to each failure, needed to
evaluate the functional misconception, is obtained from the tutor’s knowledge of failures.

Misconceptions concerning a student’s knowledge of fault related system behavior is inferred
when a student continues to pursue a failure hypothesis that should have been rejected based on the
diagnostic evidence available. As in the identification of the first two types of misconceptions, the
additional information required to evaluate behavioral misconception is available to the tutor. For
example, probable evidence against each failure in terms of diagnostic test results is stored within
the tutor’s knowledge of failures and actual tests conducted by the student are stored in the student
model. Thus, by comparison, the tutor can determine if a diagnostic test that suggests the elimina-
tion of a hypothesis has been conducted.

After evaluating a student’s misconception, an ITS generates instructions to rectify the misconcep-
tion and to improve the student’s diagnostic problem solving skills. The selection of appropriate
sets of instructions and their presentation is guided by pedagogical strategies outlined in the in-
structional module of the ITS.

Instructional Strategies

The instructional module of an ITS contains pedagogical knowledge that specifies how the tutor
should respond to various student actions. Many of the instructional modules rely on a rule-based
structure to create instructions (e.g., Burton & Brown 1982; Clancey 1987). More recently, (Woolf
& McDonald 1984) and (Macmillan, Emme & Berkowitz 1988) have proposed architectures for
dynamic instructional planners in adaptive environments. However, in any architecture, the key is-
sues to be addressed are the instructional content, its form and time of presentation.

Instructional content depends upon the instructional objectives. Several units of instruction may be
available that satisfy these objectives. Selection of a particular unit of instruction is governed by

instructional strategies chosen for the tutor. Such strategies may, under different situations, include
preference for hints or discussion of generalities as opposed to solutions or discussion of specifics.

17

Similarly, the form of presentation may be governed by another set of instructional rules. These
rules may specify preference for either graphical or textual mode of presentation under various sit-
uations. These preferences may be based on context or norms formulated through experience by
human instructors.

Finally, time of presentation of the instructional material is equally critical. There are usually two
conditions under which the tutor is expected to deliver instructions. First, when explicit queries are
raised by the student. Second, when the tutor infers a student’s misconception. In the first case. the
response should be immediate. In the second case, the response can be with or without intervention.
Instructions without intervention are usually provided at the end of a training session. While non-
intervention has some advantages because it does not disturb the student’s thought process, inter-
vention at critical stages of diagnostic activity may be an effective way of emphasizing a point.

With respect to tutorial intervention, both the model tracing approach (Anderson, Boyle & Reiser
1985) which calls for intervention as soon as the student’s observed actions stray from the norma-
tive actions and the issue-based tutoring (Burton & Brown 1982) which encourages intervention at
particular occasions may be useful.

We have described an architecture for building intelligent training systems for supervisory control-
lers in complex dynamic system domains. Figure 3 summarizes the organization of knowledge.
However, knowledge organization that captures system structure, function, and behavior, trouble-
shooting task knowledge, knowledge to evaluate and rectify misconceptions, and instructional
strategies are insufficient for the success of a tutoring system. Properly designed interactive inter-
faces also play a major role in imparting knowledge about the system and its operation during nor-
mal and abnormal situations. Turbinia-Vyasa, an implementation of the ITS architecture, is
described next.

Implementation

The ITS implementation consists of a domain simulator, Turbinia!, and a computer-based tutor,
VyasaZ. Together, Turbinia and Vyasa constitute an instructional system that trains operators to
troubleshoot oil-fired steam-driven marine power plants. Turbinia-Vyasa is implemented in Mac-
intosh Common Lisp with Common Lisp Object System and runs on Apple Macintosh II comput-
ers. Turbinia can simulate operation of a marine power plant under realistic failures.

This section is organized into four parts: (1) a brief description of the domain, including the task;
(2) adescription of Turbinia, the domain simulator; (3) a description of the computer-based tutor,
Vyasa; and (4) implementation details of both Turbinia and Vyasa. The description covers the
organization of knowledge in the instructional system and implementation details of knowledge

1. Turbines were first applied to marine propulsion by Sir Charles Parsons in 1897. Turbinia, an experimental vessel
of 100 tons, was fitted with turbines of 2,100 hp driving three propeller shafts. It attained the then record speed of
34.5 knots (A. F. Burstall, 1965, A history of mechanical engineering, MIT Press, Cambridge, MA, p.340).

2. Ancient Indian sage, scholar and teacher.

18

* Update student * Actions

model <g——P| * Misconceptions
* Evaluate
misconceptions Student
* Select Module
instruction ,
* Provide help Knowledge:
System
el 8 Task
Instructional Expert
Module Module
Tutor

Figure 3. Summary of Knowledge Organization in an ITS
representation.

The domain, the task, and the operator

The domain of Turbinia-Vyasa is an oil-fired marine steam power plant. This power plant is in-
stalled on naval vessels to produce the power required to propel and operate the ship. Production

of mechanical work in a steam-propelled marine power plant can be decomposed into four stages
(Gritzen, 1980). Each stage is associated with one of the four phases in the steam cycle: generation,
expansion, condensation and feed. Together, the four phases of the steam cycle form a closed loop.
Operators must be familiar with these four phases and their interactions for efficient and safe op-

eration.

Most failures in marine power plants, particularly those simulated by Turbinia, are usually not cat-
astrophic in nature, and Turbinia simulates only such failures. Failures often involve a single mal-
functioning component resulting in progressive deterioration of performance. Thus,
troubleshooting for a failure involves identifying a single malfunctioning component. Investiga-
tions to identify the cause of the failure must begin as soon as symptoms of abnormal behavior are
noticed.

Diagnostic problem solving task in a dynamic domain is often difficult due to three main reasons.
First, the effects of a failure, in the form of abnormal system states, propagate due to system dy-

19

namics. Second, even when such a unique relationship can be defined it can only be done for steady
state values. However, the system seldom attains a steady state. Third, even if the system attains a
steady state it may take a long time to do so. Troubleshooting, on the other hand, must begin im-
mediately, or else it may have possibly irreversible consequences.

The diagnostic task in a real system is further complicated by the operator’s inability to observe all
abnormal system behaviors. This is due to the limited number of available gauges. This limitation
prevents the operator from accessing pressures, temperatures, and flow measurements across every
component. Thus, the operator must utilize the available diagnostic information effectively to iden-
tify the malfunctioning component.

We have a limited, but pragmatic, pedagogical goal in the design of Turhinia-Vyasa. Our objec-
tive is to help improve the troubleshooting skills of marine engineers and naval personnel who learn
to operate the power plant as a part of their curriculum. A brief description of the knowledge, skills
and experience of a typical student who will be trained on Turbinia-Vyasa is provided next.

A novice operator in training, although unfamiliar with the faults in the power plant, has a basic
understanding of the theory of power generation. The student is usually also familiar with the
names and functions of the individual components but does not completely understand the integra-
tion of the components into the system, their role in achieving the higher level system goals, their
interaction with other components and the dynamics of the system. Very few students are knowl-
edgeable about the detailed structural layout of the power plant even though they may have a gen-
eral idea about the locations of individual components. Therefore, the students who will use
Turbinia-Vyasa, in addition to having practical experience and exposure to failure situations,
need to consolidate their knowledge of the structure, function and behavior of the power plant and
its components.

Next, we describe Turbinia, the marine power plant simulator. Detailed description of Vyasa, the
tutor, follows. Complete details of the implementation and a description of the student’s interaction
with Vyasa can be found in (Vasandani 1991).

Turbinia: the simulator

Turbinia, the marine power plant simulator, was designed using qualitative approximation to rep-
resent system dynamics. It can simulate a large number of failures in a marine power plant and pro-
vides a good environment for teaching troubleshooting. It is an enhanced version of QSTEAM
(Govindaraj 1987) and PEQUOD (Fath, Mitchell & Govindaraj 1990) that is more robust, modular
and object-oriented. However, Turbinia retains the basic notion of hierarchical representation of
components used in the earlier versions.

The primitives that form the basic units of the hierarchy in the simulated system are the simplest
form of components performing a single operation or a function, e.g., providing a path for some
fluid in the case of a conduit. The primitive hierarchy is shown in Figure 4. In Turbinia, approxi-
mately 100 components have been modeled to achieve fairly high degrees of structural and dynam-

20

ic fidelity even though the physical fidelity of the simulator is somewhat low.

Marine Power Plant

— \

Simple Primitive Composite Primitive
Capacitor Heat-exchanger
Conduit
Controller
Convertor
Double-gain
Gain
Phase-changer
Reactor
Sink
Source
Source-sink
Transducer

Figure 4. System Hierarchy

Vyasa: the computer-based tutor

Vyasa is the intelligent tutor that trains operators to troubleshoot Turbinia. Vyasa operates in
two modes: passive and active. In the passive mode the student is solely responsible for initiating
the communications. When the passive tutor is invoked, the simulation is temporarily brought to a
halt and the student can access various segments of knowledge in the expert module. In the active
mode, the tutor takes the initiative to provide instructions when it infers a possible misconception
based on the student’s actions. The instructions may be provided by the active tutor v. ‘th or without
intervention. The capabilities of the active tutor include all the capabilities of the passive tutor as
well.

Vyasa uses the framework for knowledge organization outlined earlier. Knowledge in the tutor is
comprised of:

(1) system knowledge,

(2) failure knowledge,

(3) knowledge of student actions,

(4) knowledge to update the student model,

(5) knowledge to evaluate misconceptions, and

(6) instructional knowledge

The expert module of Vyasa contains the system and failure knowledge. The rest of the knowledge
is contained in the instructional module of Vyasa. A complete discussion of Vyasa’s knowledge

21

follows.
System Knowledge

System knowledge in Vyasa is comprised of fluid paths, functional subsystems, and schematics
(Figure S). Each fluid path connects components sharing a common fluid in the power plant. Each
subsystem is a collection of components responsible for an important system function. Each sche-
matic is a pictorial representation of a section of the power plant. These three constituents of system
knowledge are interrelated. For instance, a fluid path may appear in multiple subsystems and sche-
matics. Similarly, a subsystem may contain several fluids and may span over multiple schematics.
Also, a single schematic may contain several fluid paths and subsystems. Each constituent of sys-
tem knowledge is now described in further detail.

System
knowledge

Components

[Structurej[Function

Figure 5. System Knowledge Decomposition

Fluid paths

Representation of a power plant as a collection of fluids is done by decomposition of the system
into thirteen fluid paths. They are: combustion air, fuel oil, flue gas, feed water, steam, superheated
steam, desuperheated steam, main condenser hot fluid, condensate, main condenser cold fluid, salt-
water, control air, and lube oil. Among these thirteen paths, six represent different segments of a
single continuous closed loop water path. Water that flows through this closed loop is called feed
water prior to entering the boiler, steam at the boiler exit, superheated steam past the superheater,
desuperheated steam at the desuperheater exit, main condenser hot fluid in paths leading to the con-
denser and condensate in the paths feeding to the deaerating feed tank.

The fluid path knowledge in Vyasa includes information such as the name of the fluid, and the
name of the subsystems and schematics in which the fluid is found. Also included is a list of con-

22

nectors and components in each schematic that contains the fluid. An example is given in the ap-
pendix.

Functional subsystems

Functional decomposition of the power plant is done via nine subsystems. They are: combustion,
steam generation, auxiliary steam use, power generation, steam condensation, feed water preheat-
ing, lubrication, control air, and saltwater service.

Steam generation, power generation, steam condensation and feed water preheating subsystems are
responsible for the four major functions performed in the power plant during the four phases of the
steam cycle, viz. generation, expansion, condensation and feed.

The combustion subsystem is responsible for burning the fuel-air mixture to release thermal energy
for heating water in the boiler. The auxiliary steam use subsystem is responsible for operating the
auxiliary units of the power plant. The interaction between all these subsystems to produce power
is summarized in Figure 6.

Combustion Steam Power
=1 Generation Generation
7§

Auxiliary
Steam

Y

Feedwater Steam
Preheating [*——|Condensation

Figure 6. Interacting Subsystems of Marine Power Plant

The remaining subsystems perform other functions necessary for the safe operation of the power

plant. The control air subsystem is responsible for distributing control air to many valves and reg-
ulators operated by control air. The lubrication subsystem lubricates moving parts and removes the
heat produced by friction. The saltwater service subsystem distributes the cold sea water to remove
heat from units dissipating heat.

The subsystem level knowledge represented in Vyasa consists of the name of the subsystem, its
primary function, the names of fluids present in the subsystem and the names of the schematics in
which the whole or part of the subsystem can be viewed. In addition, a list of connectors and com-

23

ponents that constitute the subsystem along each fluid path in each of the relevant schematic is also
included.

Schematics

In Vyasa, the structural view of the power plant is provided by seven schematics: boiler, steam,
feed water, fuel oil, control air, saltwater, and lube oil. Figure 10 illustrates an example. Each sche-
matic contains one or more subsystems and fluid paths. The boiler, steam, feed water, and fuel oil
schematics contain the main subsystems responsible for the production of power (shown in Figure
6) and all the six segments of the closed loop water path.

The schematic knowledge represented in Vyasa includes information such as the names of the
components, subsystems and fluid paths, list of icons displayed, list of graphical objects that rep-
resent the components and connectors, and a list of gauges. In addition, the schematic knowledge
of Vyasa includes information about regions of the schematic that are sensitive to mouse clicks,
records of regions picked by the user, and instructions for highlighting or lowlighting the picked
region.

Components

System knowledge at the component level concerns a component’s structure, function and behav-
ior. In Vyasa, the structural, functional and behavioral knowledge of components is organized at
the level of detail necessary for the troubleshooting task. A component’s structural knowledge re-
fers to its input and output connections to other components, fluids carried by it, gauges attached
to it and its association with a functional subsystem and schematic. The functional knowledge is a
description of the purpose of the component in the system and its contribution to the higher level
system function. The component’s behavioral knowledge describes the manner in which the sys-
tem state values are affected by the presence of the component in both the normal and failed states.

In addition, the system knowledge at the component level includes the modes in which the compo-
nent can fail, the parameters that are used to compute the component’s behavior in the failed state,
and the component’s link to the graphical object that represents it on the schematic interface.

Failure Knowledge

The failure knowledge in Vyasa is organized in terms of modes of failure and specific failures.
Specific failures are faults simulated by Turbinia. Knowledge of failure modes helps the tutor to
teach the student about typical abnormal behaviors associated with each mode. Knowledge of spe-
cific instances of failure helps the tutor in evaluating student’s actions. Both components of failure
knowledge are described below.

Modes of Failure

Vyasa has knowledge of four most common modes of failure for components of Turbinia: (a)
blocked-shut, (b) stuck-open, (c) leak-in, and (d) leak-out. Knowledge of each mode of failure in-
cludes the typical system behavior associated with it, possible reasons for deviations from expected

24

abnormal behavior, and names of components in the system that are known to fail in that mode.

Knowledge of blocked-shut mode of failure, for instance, includes the upstream and downstream
abnormal system behaviors expected in liquid and gas paths, the type of component that can curtail
the propagation of abnormal behavior, and the names of the component in the power plant that are
commonly known to fail in the blocked-shut mode. A summary of typical system behavior and the
conditions that curtail the propagation of abnormal behavior for each of the four modes is shown
in Table 1.

Table 1. Typical Abnormal System Behavior

Failure Fluid State Abnormal Behavior Propagation limited by
Mode Upstream Downstream Upstream Downstream
Liquid Level High Low Sink Source
Blocked shut
Gas Pressure High Low Safety Valve Source
Liquid Level Low High Source Sink
Stuck open
Gas Pressure Low High Source Safety Valve
Liquid Level High High Sink Sink
Leak in
Gas Pressure High High Safety Valve Safety Valve
Liquid Level Low Low
Leak out Source Source
Gas Pressure Low Low
Specific Failures

Knowledge of specific failures includes initial symptoms, cause and mode of failure. In addition,
the subsystems, fluid paths, schematics, components and gauges affected by each failure are in-
cluded in the tutor’s knowledge of specific failures.

Vyasa also has access to “pre-defined” explanations of cause-effect associations that describe the
propagation of abnormal gauge readings under each failure condition. These explanations, along
with diagnostic tests that serve as evidence for or against the specific failures, form an essential part
of the tutor’s failure knowledge. A detailed example is given in the appendix.

Knowledge of Student Actions

A computer-based tutor must have some means of evaluating the intended purpose of student’s ac-
tions. This capability enhances the tutor’s ability to infer misconceptions. Vyasa infers student’s
misconceptions based on student’s actions using its knowledge of the valid forms of interactions at
the student-tutor interface.

A student interacts with Turbinia-Vyasa in three modes: troubleshooting mode, tutor dialog

mode, and diagnose mode. In the troubleshooting mode the student interacts with the simulator
only. In the tutor dialog mode, the interaction is with Vyasa. In the diagnose mode, the student
attempts to identify the failed component.

In all the three modes of interaction, Vyasa recognizes nine types of valid actions: call-for-sche-
matic-action, investigative-action, informative-action, diagnose-request-action, diagnostic-action,
help-request-action, resume-request-action, tutor-dialog-action and modal-dialog-action. A call-
for-schematic-action is performed to call a new schematic or switch between schematics. An in-
vestigative-action is performed to view the gauges attached to a component. An informative-action
usually follows the investigative-action and is taken to display the gauge readings. A diagnose-re-
quest-action is taken to switch to the diagnostic mode. The diagnostic-action is the action of iden-
tifying the failed component. The help-request-action and the resume-request-action switch the
student to the tutor dialog and the troubleshooting modes respectively. Tutor-dialog-actions are all
actions taken in the tutor dialog mode. Finally, modal-dialog-actions terminate interactions with
dialogs.

Vyasa keeps a record of all recognized actions in a student model. This record is updated and used
to determine student’s misconceptions after every action.

Knowledge to Update the Student Model

The student model in Vyasa is a dynamic data structure that maintains a record of actions taken
by the student. Each student action, if recognized as one of the nine types of valid actions, is time
stamped and information relevant to the action is stored. In this manner, the student model keeps
account of the schematics viewed, the order in which they were viewed, the sequence of sub-
systems and fluid paths explored, the components investigated, the gauges probed and their gauge
readings at the time of the investigation.

After each student action, the subsystem and the fluid path most suspected by the student is deter-
mined. A count is kept of the number of investigations made in each subsystem and fluid path. The
subsystem and the fluid path with the maximum number of investigative-actions are also the most
suspected if at least one of the last three investigations have occurred in that subsystem or fluid
path. Otherwise, the most suspected subsystem or the most suspected fluid path is the one investi-
gated last. Thus, after every action, the information concerning the most suspect subsystem and the
most suspect fluid path in the student model is revised.

In addition to recording the actions, the student model maintains a list of the student’s past and cur-
rent hypotheses concerning the failure. This information is a list of components with their respec-
tive modes of failure, which, in the opinion of the student, explains the observed abnormal system
behavior. This information on student’s failure hypotheses is directly elicited from the student
when Vyasa functions in the active mode.

Knowledge to Evaluate Misconceptions

The knowledge to evaluate misconceptions gives Vyasa the ability to deliver individualized in-

26

structions. This knowledge has a rule-based structure. These rules are used to identify three types
of misconceptions based on observed student actions.

The first misconception concerns deficiency in student’s knowledge of system structure. Vyasa
identifies this structural misconception when the student investigates components in a schematic
unaffected by the current failure. Knowledge of schematics affected by each failure, needed to eval-
uate the structural misconception, is obtained from the tutor’s knowledge of the failures.

The second misconception concerns deficiency in student’s knowledge of system functions.
Vyasa identifies this functional misconception when the most suspected subsystem or fluid path
inferred from the student’s action is unrelated to the failure being investigated. Knowledge of sub-
systems and fluid-paths related to each failure, needed to evaluate the functional misconception, is
obtained from the tutor’s knowledge of the failures.

The third misconception concerns deficiency in student’s knowledge of fault related system behav-
ior. Vyasa identifies this behavioral misconception when a student continues to pursue a failure
hypothesis that should have been rejected based on the diagnostic evidence available. As in the
identification of the first two types of misconceptions, the additional information required to eval-
uate behavioral misconception is available to the tutor. For example, probable evidence against
each failure in terms of diagnostic test results is stored within the tutor’s knowledge of failures and
actual tests conducted by the student are stored in the student model. Thus, by comparison, the tutor
can determine if a diagnostic test that suggests the elimination of a hypothesis has been conducted.

After Vyasa has evaluated a student’s misconceptions, it uses its knowledge to deliver instructions
to rectify the misconceptions. Knowledge concerning delivery of instructions is described under
instructional knowledge.

Instructional Knowledge

Instructional knowledge concerns instructional content, its form and time of presentation. The in-
structional content is either extracted verbatim from the tutor’s knowledge base or is generated us-
ing a template. The form of instructional presentation is either textual or graphical. The time of
presentation of instructional material depends on the context and the student actions. Knowledge
related to content, form and time of instructional presentation is discussed in further detail below.

Content

Information provided to the students by the tutor comes from units of instructional sets prepared in
advance. However, the details to be inserted in the instructional sets is often context-driven. For
example, when a student inquires about the behavior of a component, the information is always
presented in the same format on a dialog box. It consists of relationships between input and output
states of the component. Details of the input-output relationships depend upon the functional prim-
itive that represents the component. Thus, although the details of the information presented are
context-specific, they are extracted verbatim from the tutor’s knowledge base.

27

The instructional template used for advice generation is the same on all occasions for the same type
of advice. In all there are four such instructional templates used by the tutor. Each template is used
for a different type of advice. One is used for suggesting hypotheses revision (see Figure 7), another
to indicate lack of adequate evidence to pursue a hypothesis, a third to suggest a diagnostic test to
strengthen or weaken a hypothesis; and a fourth to convey the tutor’s inability to provide advice
under existing conditions.

(Suspected Failure Mode) (Suspected Component)

(Suspected Component) has probably not failed in a (Suspected
Failure Mode) mode because the (Gauge) on (Component) shows

a (Qualitative State Value) reading.

Figure 7. Example of an instructional template
Form

Like content, the form of instructional presentation is also context-dependent. For example, an-
swers to queries related to subsystems and fluid paths that can be visualized on the simulator inter-
face are presented graphically. Where graphics is unlikely to enhance the understanding of the
instructions or where graphical aid is computationally expensive the instructions are presented in
the form of text. Therefore, when the student wants to know the components that constitute a par-
ticular subsystem, showing these components by highlighting them in schematics is preferred over
listing the names of the components in a dialog box.

Form of presentation include more than just the graphics and/or text. There are certain instructions
that convey an error message or require immediate attention. When these instructions are dis-
played, they are accompanied by a beep. Instructions of this type must be acknowledged before the
student is permitted to proceed further. Such instructions disable the mouse, until the student per-
forms a specified action.

Generation of help and instructions
Time and Duration

Apart from instructional content and its form of presentation, Vyasa has knowledge about time
and duration of instructional presentation. Instructions that are given on request from the student
are provided immediately in a dialog box or in the special tutor communication window. These in-
structions are displayed for an unspecified duration of time until the student makes a new request.
In some cases, however, the student is required to acknowledge the receipt of instructions before
making a new request.

28

In addition to the instructions presented on request, Vyasa delivers instructions on its own. Vyasa
delivers these instructions with and without intervention depending on the context.

Instructions with Intervention

When the tutor identifies a misconception, instructions to rectify the misconceptions are presented
immediately with a beep. The tutor has different sets of instructions for each of the three types of
misconception it identifies. The instructional sets for structural and functional misconceptions in-
form the student that a region unaffected by the current failure is being investigated unnecessarily.
The idea is to suggest that the student only investigate portions of the system relevant to the failure.
Similarly, when behavioral misconceptions are identified, the student is instructed to refine the fail-
ure hypotheses based on the evidence available.

Since the instructions to rectify misconceptions are highly context-sensitive and may change with
every new action taken by the student, they need to be presented only as long as they retain their
contzxt-sensitivity.

Instructions without Intervention

Instructions are also provided without intervention at the end of thet .ing session. These instruc-
tions include explanations of abnormal gauge readings for the failure investigated during the ses-

sion. These are causal explanations that animate the effects of fault propagation and are presented

in a chronological order. For each failure, these explanations are stored as a pre-defined set in the

failure knowledge of Vyasa.

This completes the description of the components of knowledge in Vyasa. Specific implementa-
tion details, with representative examples, are provided in the appendix. Complete details can be
found in (Vasandani 1991). Coordination and control of different components of knowledge in
Turbinia-Vyasa are discussed next.

Control and coordination

In Vyasa, the knowledge concerning evaluation and rectification of student’s misconceptions is
represented as rules. These rules are organized in the instructional module of the tutor in several
units called knowledge sources. There are knowledge sources for recognizing and understanding
student actions, updating the student model, evaluating misconceptions and presenting instructions
to rectify the misconceptions. The overall tutoring objective of Vyasa when operating in the active
mode is achieved by the coordinated efforts of these individual knowledge sources.

A blackboard-like conirci architecture (Hayes-Roth 1985; Nii 1986) coordinates the modules that
contain various components of knowledge sources and performs high level control and planning of
pedagogical functions. It consists of a blackboard object and several rule-based knowledge sources
that can access information posted on the blackboard and make changes to it (Figure 8). The know!-
edge sources are invoked when preconditions necessary to activate them are posted on the black-
board. Together, the blackboard and the knowledge sources play an important role in helping
Vyasa evaluate and provide help to rectify student misconceptions.

29

State of the |
instructional system| Blackboard

Tutor behavior Student behavior
(student model)

rectify])
misconceptions recognize actions
. - ez:luat:,ions hymtses \\\ |
(sconcep Knowledge sources /

\ compute about fai
.5, advi t ure
=

Figure 8. The Blackboard Control Architecture

The blackboard stores information concerning the state of the instructional system. The state of the
instructional system is defined in terms of the tutor mode, the state of the simulation, the current
displays, time spent by the student in the different modes of interaction and the pending events. The
blackboard also stores complete information related to the student’s last action and historical infor-
mation necessary to determine the context for current and future action. Information conceming
the system response to the student action is also recorded.

In addition, the blackboard captures the dynamic evolution of the tutor and student behavior. While
most of the student behavior evolves dynamically, some of the tutor behavior is derived from the
tutor’s knowledge of the failures. The information obtained from tutor’s knowledge of the failures
remains unchanged for the problem solving session. This information concerns current failure and
is used by the tutor to evaluate student performance.

The information posted by the knowledge sources is dynamic and concerns the student. It includes
information solicited by the knowledge sources from the student such as the student’s initial hy-
potheses and current hypotheses. It also includes summary of hypotheses refinement, evidence
against current hypotheses, and the most suspected subsystem and fluid path as inferred from stu-
dent actions. In addition, the existing misconceptions of the student and those rectified during the
current session are posted by knowledge sources that evaluate and rectify misconceptions. A record
of the actions taken since the various types of misconceptions were last identified is also main-
tained. Additional information concerning actions taken by the student is stored and updated dy-
namically by knowledge sources after every student action.

30

Several knowledge sources use the blackboard as a globally shared database and often compete
with each other to modify information on the blackboard. Some of these knowledge sources also
determine and execute the appropriate pedagogical functions of the tutor based on the current status
of the instructional system. Two of the knowledge sources (Figure 8) help the students with their
failure hypothesis.

The first of these knowledge sources is invoked when help is sought for failure hypothesis that
matches one of the specific cases of failure known to Vyasa. For such hypothesized failures,
knowledge conceming affected gauges is available to the tutor. This knowledge is used to deter-
mine whether the hypothesized failure is probable based on the observed symptoms. If so, the tutor
suggests more tests to strengthen the student’s belief in the hypothesis. If not, the tutor suggests
tests to weaken the student’s belief in the hypothesis. Also, since the knowledge source has access
to the information displayed on the blackboard, it can determine if evidence has already been gath-
ered to eliminate suspicion from the hypothesis. If so, the student is advised to drop the hypothesis
from the list of suspected components.

The second knowledge source is invoked when the knowledge of the hypothesized failure is un-
available to the tutor. Instead, knowledge of the general modes of failure is used by the knowledge
source to generate advice. For example, if the hypothesized failure involves blocked shut mode of
failure, the knowledge source first determines the fluid path through the suspected component.
Then, using its knowledge of modes of failure it determines the expected abnormal behavior asso-
ciated with the fault. Next, using the knowledge of available gauges, the knowledge source deter-
mines if the expected abnormal behavior is observable under the current situation. If so, it suggests
checking the relevant gauges to strengthen or weaken the student’s belief in the hypothesis.

Summary

We discussed Turbinia-Vyasa, an implementation of the ITS architecture. The marine power
plant domain, salient features of the troubleshooting task, and the educational background of the
student trainees were discussed. Next, organization of knowledge in Turbinia-Vyasa was de-
scribed. The discussion of knowledge organization included a description of the various compo-
nents of knowledge represented in the instructional system. Finally, a control architecture was
described that is used by the instructional system to plan the pedagogical functions of the tutor.

Complete details of the implementation can be found in Vasandani (1991). The interface of Tur-
binia-Vyasa and details of student interaction with the instructional system are described next.

Interactive Interfaces and Student-Tutor Interaction

The student-tutor interface of Turbinia-Vyasa has been developed on a dual screen Apple Mac-
intosh II workstation. The configuration consists of a 19" color monitor on the left and a 13" color
monitor on the right (Figure 9). A single button computer mouse that can point to all locations on
both screens is used for input. All actions at the interface involve moving the mouse cursor to a

desired location and clicking once on the mouse button. All valid user actions have appropriate re-

31

sponse while invalid actions are ignored by the system.

Figure 9. Screen configuration

The joint interface to Turbinia-Vyasa consists of an interface to the simulator Turbinia, and di-
alogs to interact with Vyasa. Turbinia’s interface consists of seven schematic windows, a sche-
matic menu, a requests menu, a symptom dialog, several error dialogs and a clock. Student
interaction with Vyasa is accomplished by multiple levels of hierarchically organized passive tu-
tor help dialogs and a hypothesis menu.

Interaction with Turbinia-Vyasa

At the beginning of every training session, the large screen displays three menus and a clock. The

three menus are: the schematic menu, the requests menu and the hypothesis menu. A tutor dialog

is displayed on the bottom edge of the small screen. For sessions where the active mode of the tutor
is not invoked, the hypothesis menu under the requests menu is not displayed. The student interacts
with Turbinia through the seven schematics that display the physical connections between com-

ponents of the power plant. (An example schematic, slightly altered from the actual display for im-
proved clarity, is shown in Figure 10.) These schematics can be accessed by clicking on the icons

in the schematic menu. When the student clicks on a displayed gauge to probe its reading, an icon
appears near the gauge. This icon is a qualitative representation of the current gauge reading, which
is either low, slightly low, normal, slightly high or high.

32

Figure 10. Boiler schematic
Interaction with Turbinia

Each icon in the schematic menu represents a different schematic. The same schematic icon that is
used to access the schematic also appears in the top right comer of the schematic it represents. The
features of the schematic interface of Turbinia are discussed next, mainly with reference to boiler
schematic.

When the student clicks on a displayed gauge to probe its reading, an icon appears near the gauge.
This icon is a qualitative representation of the current gauge reading. Turbinia uses five different
qualitative representations of state values. These five are low, slightly low, normal, slightly high
and high; each is represented by an icon as shown in Figure 11.

yellow

ye“ow __Ee_cn—

red

Low Slightly Low Normal Slightly High High

Figure 11. Qualitative state representation

Interaction with Vyasa
Passive Mode

When Vyasa operates in the passive mode, the student is responsible for initiating communica-

33

tions with the tutor to learn about the system and the failures. Student-initiated interaction with the
tutor is accomplished by clicking on the stop icon in the requests menu. This action halts the sim-
ulation temporarily, enabling the student to interact with the tutor while preserving the information
concerning system states.

Whenever the passive tutor is invoked, the stop and the resume icons change their background col-
ors. The stop icon background changes to yellow-brown indicating that it has been disabled. At the

same time, the background of resume icon turns gray indicating that it has been enabled. The cursor
too changes shape and turns into a “?”’. All these changes indicate that the student is not in the trou-
bleshooting mode and hence cannot investigate components and view gauge readings. For instance,
Figure 13 shows the superheated steam path within the steam generation subsystem inside the boil-
er schematic. This display appears in response to a student selecting the stop icon to bring up the

help categories dialog, and progressively choosing the subsystem and the fluid path.

Heip Categories Subsystems Subsystem Atiributss Subsgstem Gas Peths
[You may van ® kanw B shout Combusdou als
(=) . Pl g
Coannl at
pover-geasedion
=y (P) Suea
(ws) Capeas)) |et-vemr-smiatng Superieand swem
' — (Tavseeres] -
(el) | ammtenr (Shev-sstoves) DecnpactuansP com
boiler-schomatic

b4 Superheated steam

Figure 12. Superheated steam path highlighted in steam generation subsystem

Active Mode

In the active mode, Vyasa often intervenes to communicate with the student. It does this through
instructions presented on the tutor dialog, accompanied by a beep. These instructions are delivered

following the evaluation of a student’s misconception. For instance, if the student investigates sche-
matics, subsystems, or fluid paths unaffected by the failure, the tutor delivers the appropriate in-
structions to guide the student away from unaffected portions of the power plant (Figure 13). Such
instructions are usually displayed for a fixed, but short, period of time since the instructions lose
their context due to system dynamics and student actions.

Tutor: You seem to be investigating a schematic unaffected by
the current failure

Figure 13. Example of instructions from Vyasa

The tutor in the active mode is also capable of helping the students with their hypotheses. Student’s
hypotheses concerning failures are either solicited by the tutor or voluntarily disclosed by the stu-
dent. In either case, the manner of communicating the failure hypotheses to the tutor is identical.
First, the tutor asks the student to select the suspected component responsible for the current ab-
normal system behavior. Afte: the student selects a component, she is prompted to identify the fail-
ure mode. The student can use the hypothesis menu to add or delete hypotheses, view the
hypotheses that are currently active, and ask for advice corcerning any active hypothesis.

The student interacts with the instructional system at the end of every problem solving session to
view the solution to the problem last presented. The solution and the interaction with the instruc-
tional system depends upon whether the student was using only the simulator or was also aided by
the tutor. Students using just the simulator see only the solution as shown in Figure 14. Students
aided by the tutor have the option of viewing the explanation for each observed abnormal behavior.
The explanation containing causal reasons for each abnormal gauge reading are presented, one at
a time, and in the order in which the gauges are affected by the failure. In presenting the reasons
for each abnormal gauge reading, first the schematic which contains the affected gauge is dis-
played, then the affected gauge along with its gauge reading are made visible and finally an expla-
nation for the abnormal reading is displayed in a dialog box on the small screen (Figure 15). Once
the student has read the explanation and clicked on the “OK” button, the tutor proceeds to provide
a similar explanation for the next affected gauge. This process continues until the tutor completes
providing an explanation for each abnormal gauge reading caused by the failure.

This completes a description of the student-tutor interface of Turbinia-Vyasa and the valid forms
of operator interactions at this interface. Additional details are given in (Vasandani 1991; Vasan-

dani & Govindaraj 1993b). An experimental study to evaluate the ITS architecture implemented in
Turbinia-Vyasa is described next.

35

Conse Affected Subsystems Affected Fluid Paths Affected Schemetics
Pood-wane nguiaur s souck closed
(fosd-watr-pmbnating-subsypun (leod-wums flw-gur conbustinn-ois (swam-echonatls
shelb-geteniise-suirtn fui-ofl supethostnd-shem \ndior-schamatic
Sywplom conbustiag-seboyona Garpesiootsd-suam sl ood- vame-sthanetic
Wisa spesding @ @0 ship, beller bvel dsege v pover-gaantisa-sulsyun) maia-cendenser-hot-finid fusi-ofi-schematic)

Figure 14. Solutions for students trained on simulator

The spead of the ship is increased by increasing the mass flow rats of steam to
the turbings. When the steams demand froas the boiler incressss, the steasa pressurs

the
of steam from the boiler is incresssd, the feed water control mechanism
has to adjust the flow raie of fesd waler to 2 mass balance of flow inlo

may be regarded as an ezample of a blocked valve.

Because the fesd-watsr-regulator does not permit an increase in the feed waler flow
nmummwinmm' food-tank risss above the
BO! value.

Figure 15. Explanations for abnormal system behavior
Experiment

In the experiment, we investigated the performance of subjects trained with and without the tutor.
There were two goals: (1) determining the effectiveness of the tutoring architecture and methods
for knowledge representation and (2) establishing the usefulness of computer-based training pro-
grams over traditional means of training operators to troubleshoot complex dynamic systems. In
addition, the experiment provided an opportunity to compare the effect of passive and active tutor-
ing strategies.

Thirty paid volunteers, who were students at Georgia Institute of Technology and cadets with the
Naval Reserve Officers Training Corps unit, participated as subjects. All except one subject were
male. Subjects had a basic understanding of the theory of marine power plants. Among those se-
lecied for the experiment were twenty-four sophomores and six juniors. A few of the subjects had
additional exposure to thermodynamics through course-work or had limited experience operating
the marine power plants.

For every session completed in both the training and the testing phase each subject was paid $6 per
session. In addition, an award of $25 was promised for the best troubleshooter in each of the three
groups based on performance in the two data collection sessions. All subjects were told about the
performance measures prior to the experiment. They were also informed that for the purpose of de-
termining the award, the number of problems correctly diagnosed in minimum time was the only

36

measure to be considered.

Subjects were randomly assigned to the three experimental groups. The experiment consisted of
two phases: training and data collection. In the training phase, subjects were exposed to one of the
three instructional methods: (a) training on simulator alone (S); (b) training with the aid of a pas-
sive tutor (P); and (c) training with the aid of an active tutor (A). During data collection, trained
subjects from all three conditions attempted to solve the same set of problems unaided by the tutor.
The effect of training was then evaluated in the data collection phase where all subjects were ex-
posed to identical problems on Turbinia without the aid of the tutor.

There were ten training sessions, each lasting no more than forty-five minutes. The sessions were
run on consecutive days with typically one session per day. Occasionally, when a subject missed a
day, the lost session was made up by extending the training period by a day. Under no circumstanc-
es was a subject permitted multiple sessions in a day.

The first training session for each group introduced the system using a single problem. Audio taped
instructions, different for each group, were used during this session. These instructions introduced
the subjects to the interface and valid forms of interactions.

After the first session, subsequent training sessions had three problems each. A subject had thirteen
minutes to solve each problem. If the subject solved the problem in less than the allotted time, the
next problem was immediately presented. Thus, if the subject solved one or more of the three prob-
lems in a session within the allotted time for each problem, the session could potentially be com-
pleted in less than forty-five minutes.

At the end of each problem the subject was provided the solution. While solutions presented to sub-
jects with the tutor were accompanied by an explanation, no such explanation was provided to sub-
jects using the simulator alone.

The data collection phase consisted of two sessions. These sessions were run on consecutive days
immediately following the completion of training. During these sessions, the subjects interacted

with the simulator only, unaided by any tutor, irrespective of their training condition. Thus, even

the subjects in Groups P and A who were earlier aided by the tutor were unaided during the data
collection sessions.

Each data collection session was approximately fifty minutes long and consisted of five problems.
If the subject solved the problem within the ten minute time period allocated for each problem, the
next problem was immediately presented. However, unlike the training sessions, no solution was
provided to the student at the end of the problem. At the end of the data collection sessions, all sub-
jects completed an exit questionnaire.

Results

The data were analyzed using the SAS General Linear Model and Type III sum of squares. The
effect of training condition on the performance of the subjects is summarized Table 2. A brief dis-

37

cussion follows.

Table 2. Summary of Training Condition Effect

Training Condition Performance
Comparison (a=(0.05)
Performance Measures Simulator Passive Tutor Active Tutor
8) P (A) * Significant at a=0.1
Product Measures
Percentage of problems solved 93.00 95.00 88.00 Not significant
Troubleshooting time (minutes) 2.62 343 369 Nox significant®
Process Measures
Number of informative actions per problem 10.72 8.18 8.83 Not significant*
Percentage of relevant informative actions 59.70 72.50 71.50 (S) < (P).(A)
Percentage of guesses 71.40 35.23 29.50 (S)> (P), (A)
Investigations (per problem) in unaffected
Schematics 0.36 0.81 181 Not significant*
Subsystem 0.12 040 1.00 (S)>(P). (A)
Fluid-paths 0.23 035 098 (8)>(P),(A)
Nature of diagnosis (% of solved problems)
Premature 26.80 53.70 19.35 (S) > (P), (A)
Timely 1473 81.00 420 (8) < (P), (A)
Overdue 9.00 85.22 5.60 (8) > (P), (A)

There was no significant difference in the number of problems solved across the three training con-
ditions. The relatively poor performance by subjects in Group A can be attributed to three factors.
First, a single subject was responsible for five of the unsolved problems. Second, subjects in Group
A were more inclined to leave a problem unsolved because they were reluctant to guess the failures.
Third, the subjects in this group became somewhat dependent on the tutor to solve the problems
and when the tutor was withheld from them, during the test sessions, their performance deteriorat-
ed.

The troubleshooting time was also not significantly different. This result is not at all surprising con-
sidering that the unaided group did not have a guided strategy to solve the problems and relied
heavily on guessing. Guessing as opposed to abstract reasoning takes less time. However, at a level
of 0.1, the effect of training condition on troubleshooting time was significant.

Even though the number of informative actions was statistically not significant, the data indicate

that the subjects in Group S, in comparison to the subjects in other two groups, needed more diag-
nostic tests to solve the problems. In other words, subjects in Groups P and A utilized the diagnostic
information more effectively and required smaller number of diagnostic tests to solve the problems.

The percentage of relevant informative actions taken by the subjects in the two aided groups was
significantly higher, implying that those trained by the tutor were better able to identify the diag-
nostic tests that were useful for solving a problem.

38

The effect of training condition was significant with higher percentage of guesses for the unaided
group in comparison to the two aided groups. Evidence of guessing strategy was noticed in 60%
of the problems for Group S and only 39% and 30% of the problems for Groups P and A respec-
tively. Also, the data indicate that the subjects in Group S often used guessing as a primary strategy
whereas the subjects in Groups P and A started guessing only when they were running out of time.

Detailed analysis of the number of unaffected schematics/subsystems/fluid-paths investigated
showed that subjects in the two aided groups performed significantly fewer investigations in unaf-
fected subsystems and fluid paths. In other words, subjects in the two aided groups were able to
better identify the location of the fault and investigate the relevant portions of the power piant.

The usual SAS analysis of variance was not possible for the nature of diagnosis, which consisted
of comparing the three mutually exclusive categories cof correct diagnoses (premature, timely and
overdue) from each training group. Therefore, pair-wise comparisons were performed to detect sig-
nificant differences across the three training conditions. Of the problems solved, subjects in Group
S performed more premature diagnoses as compared to subjects in Groups P and A. Since the sub-
jects in Group S relied rather heavily on guessing, it is not surprising that they got lucky more often.
The results suggest that the subjects in the two aided groups either formed a better understanding
of cause-effect associations or utilized it more effectively to diagnose faults. Also, for subjects in
Group S, more diagnoses were overdue as compared to the two aided groups. This shows that the
subjects in Group S were not as good at integrating diagnostic information as the subjects in the
two aided groups.

From the results presented above and additional data analysis (Vasandani 1991), it was apparent
that the tutor in both the passive and the active modes helped the students to develop useful trou-
bleshooting strategies. Those trained by the tutor formed plausible failure hypotheses based on ob-
served symptoms and systematically eliminated them by conducting appropriate diagnostic tests.
In comparison, those trained without the tutor did not develop good troubleshooting strategies.
They relied rather heavily on guessing the solution. Furthermore, the tutor helped the students to
recognize and integrate crucial diagnostic information in a timely manner that the students without
the tutor were unable to do. Students trained by the tutor were better-prepared for unfamiliar situ-
ations than those trained on the simulator.

The data also indicated that the effectiveness of a tutoring strategy depended upon the individual
student. For example, the strategy of providing explanations for all observed symptoms for each
problem was intended to help the students develop a proper causal model of fault propagation.
Some students who learned to map salient symptoms to causes from these explanations became
overly conservative. During troubleshooting they spent a lot of time eliminating all probable hy-
potheses linked to an observed symptom even when sufficient evidence in support of a highly prob-
able hypothesis had been collected. Another tutoring strategy adopted by the active tutor was to
provide help in building, refining, and eliminating failure hypotheses. In this capacity the active tu-
tor came to be perceived by some students as an on-line associate. These students often took the

39

help of the active tutor to refine their failure hypotheses and thus became dependent on the tutor to
solve problems. Performance of these students deteriorated when the active tutor was withdrawn.

Experimental results show that a simulator alone is inadequate for training purposes. However, a
simulator in conjunction with an effective computer-based tutor can help develop efficient trouble-
shooting skills. Such a tutor must teach operators to identify useful diagnostic tests, use the results
of these tests to formulate plausible hypotheses concerning failure, and systematically refine the
hypotheses based on new diagnostic data until the cause of failure is identified. Operators trained
by such a tutor are likely to rely less on guessing and more on abstract reasoning. Consequently,
these operators are likely to provide incorrect diagnoses less often.

In real-world, where there is a cost associated with each incorrect diagnosis, less incorrect diag-
noses can save valuable time and reduce troubleshooting costs. However, since not all students are
equally receptive to every tutoring strategy, provisions must be made in training programs for in-
dividual preferences and differences in abilities and styles. Otherwise, student’s may become over-
ly conservative or too dependent on the tutor for help. While conservative behavior may not
necessarily be bad, too much dependence on the tutor is undesirable. Therefore, assistance provid-
ed by the tutor that directly helps students in solving the problems must be avoided to control the
students’ -~ 2nce on the tutor.

Also, use of certain features of the tutor, like hypothesis aiding, may be useful in other applications
such as an on-line operator’s associate. Possibility of success of hypothesis aiding in an on-line op-
erator’s associate application was indicated by the performance data of students who exploited this
feature of the active tutor to successfully solve problems during training. They frequently provided
the tutor with failure hypotheses and sought advice on each one of them. As a part of its counseling
task, the tutor would check if evidence had already been gathered to reject the hypothesis, and if
s0, the student would be told about it. Thus, the students in fact assigned the tutor the task of filter-
ing out the less likely alternatives and based on the tutor’s advice refined their hypotheses till they
could identify the failed component with reasonable amount of certainty.

Conclusions

A major impediment to successfully extending research results in ITS to real-world systems stems
from a lack of suitable methodology for knowledge organization. We have developed a framework
for organizing knowledge that should help remedy this situation. We described an architecture in
which system and task knowledge are organized in a coherent manner to facilitate rapid construc-
tion of ITSs for complex dynamic systems. The framework decomposes system, task, and peda-
gogical knowledge for teaching diagnostic problem solving task in a marine power plant domain.

We have implemented a prototype instructional system, Turbinia-Vyasa, and evaluated it exper-
imentally. Experimental results support the viability of designing and implementing effective tu-
toring systems for complex dynamic system domains. Instructional systems that integrate
intelligent tutors with a simulator and provide access to multiple, complementary, system represen-

tations via direct manipulation graphical interfaces can contribute greatly to an effective training
program. In our current research, we are developing a family of models to represent the knowledge
about the system, tasks, and problem solving strategies employed by operators with different levels
of expertise. We are studying both continuous and discrete event dynamic systems, including man-
ufacturing systems and cofnputer networks. Results of this research should lead to the development
of enhanced architectures for computer-based intelligent systems to assist operators in control and
coordination tasks that require different skill levels.

Acknowledgments

The research reported here has its roots in work sponsored by a previous grant from the Office of
Naval Research (ONR). Drs. Marshall Farr and Henry Halff at ONR realized the need to study trou-
bleshooting in complex, real-world domains, and provided financial and moral support for our
work. Later, Drs. Michael Shafto and Susan Chipman saw the need to continue this support via
contract N00014-87-K-0482 from Manpower, Personnel, and Training R & D Program to the
Georgia Tech Research Corporation. Drs. Farr, Halff, Shafto, and Chipman were cheerleaders and
promoters, and performed many other supporting roles that one does not normally associate with
faceless government bureaucrats. Dr. Susan Chipman, the most recent Contract Monitor, helped
with critical comments and suggestions on methodological issues relevant to cognitive science and
training throughout the duration of this project and made efforts to publicize our research. We (es-
pecially TG) are grateful for all that they have done. We wish to thank the staff and cadets of the
Georgia Tech Naval ROTC unit for their cooperation and help. We especially appreciate the help
from Lt. William A. Marriot.

References

1. Anderson, J. R. (1988). The expert module. In M. C. Polson and J. J. Richardson (Eds.), Foun-
dations of ITS, Lawrence Erlbaum Associates, Hillsdale, NJ.

2. Anderson, J. R, Boyle, C. F, and Reiser, B. (1985). Intelligent tutoring systems. Science,
228(4698), pp. 456-462.

3. Bureau of Naval Personnel (1957). Engineering Operation and Maintenance. Prepared by the
Bureau of Naval Personnel.

4. Brown,J. S., Burton, R. R,, and de Kleer, J. (1982). Pedagogical, natural language and knowl-
edge engineering techniques in Sophie I, Il and III. In D. Sleeman and J. S. Brown (Eds.), In-
telligent Tutoring Systems, Academic Press, London.

5. Bums, H,, Parlett, J. W,, and Redfield, C. L. (Eds.) (1991). Intelligent tutoring systems: Evo-
lution in design. Lawrence Erlbaum Associates, Hillsdale, NJ.

6. Burton, R. R., and Brown, J. S. (1982). An investigation of computer coaching for informal
learning activities. In D. Sleeman and J. S. Brown (Eds.), Intelligent Tutoring Systems, Aca-
demic Press, London.

7. Chamiak, E., and McDermott, D. (1985). Introduction to artificial intelligence. Addison-Wes-
ley, Reading, MA.

41

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Clancey, W. J. (1987). Knowledge-based tutoring: The GUIDON program, MIT Press, Cam-
bridge, MA.

Fath, J. L., Mitchell, C. M., and Govindaraj, T. (1990). An ICAI architecture for troubleshoot-
ing in complex, dynamic systems. IEEE Transactions on Systems, Man, and Cybernetics, vol.
SMC-20 no. 3, pp. 537-558.

Frasson, C. and Gauthier, G. (Eds.) (1990). Intelligent Tutoring Systems: At the crossroad of
artificial intelligence and education. Ablex Publishing Corp., Norwood, NJ.

Goldstein, 1. L. (1986). Training in Organizations: Needs Assessment, Development, and
Evaluation. Brooks/Cole Publishing Co., Pacific Grove, CA.

Govindaraj, T. (1987). Qualitative approximation methodology for modeling and simulation
of large dynamic systems: Applications to a marine power plant. [EEE Transactions on Sys-
tems, Man, and Cybernetics, vol. SMC-17 no. 6, pp.937-955.

Govindar , T. (1988). Intelligent computer aids for fault diagnosis training of expert opera-
tors of large complex systems. In J. Psotka, L.D. Massey and S.A. Mutter (Eds.), Intelligent
Tutoring Systems: Lessons Learned, Lawrence Erlbaum Associates, Hillsdale, NJ.

Govindaraj, T., and Su, Y. -L. (1988). A model of fault diagnosis performance of expert ma-
rine engineers. International Journal of Man-Machine Studies, vol. 29, pp. 1-20.

Gritzen, E. F. (Ed.) (1980). Introduction to Naval Engineering. Naval Institute Press, Annap-
olis, MD.

Hayes-Roth, B. (1985). A blackboard architecture for control. Artificial Intelligence, vol. 26
(3), pp. 251-321.

Hollan, H. D., Hutchins, E. L., and Weitzman, L. (1984). STEAMER: an interactive inspect-
able simulation-based training system. A Magazine, 5(2), pp 15-27.

Johnson, W. B. (1988). Pragmatic considerations in research, development, and implementa-
tion of intelligent tutoring systems. In Polson, M. C. and Richardson, J. J. (Eds.), Foundations
of intelligent tutoring systems. Lawrence Erlbaum Associates, Hillsdale, NJ.

Kearsley, G. Overview. In Kearsley, G. (Ed.) (1987). Artificial Intelligence and Instructions:
Applications and Methods. Addison- Wesley, Reading, MA.

Lajoie, S. P, and Lesgold, A. (1990). Apprenticeship training in the workplace: Computer
coached practice environment as a new form of apprenticeship. In Machine-Mediated Learn-
ing.

Lesgold, A. (1990a). Tying development of intelligent tutors to research on theories of learn-

ing. In H. Mand], E. De Corte, S. N. Bennett, and H. F. Friedrich (Eds.), Learning and Instruc-
tion: European research in an international context. Vol. 3. Pergamon, Oxford.

Lesgold, A. (1990b). Intelligent computer aids for practice of complex troubleshooting. FAA
symposium on Training Technology.

Lesgold, A., Lajoie, S. P., Bunzo, M., and Eggan, G. (1991). SHERLOCK: A coached practice
environment for an electronics troubleshooting job. In J. Larkin, R. Chabay, and C. Scheftic
(Eds.), Computer assisted instruction and tutoring systems: Establishing communication and
collaboration, Lawrence Erlbaum Associates, Hillsdale, NJ.

Macmillan, S. A., Emme, D., and Berkowitz, M. (1988). Instructional Planners: Lessons

42

.

25.

26.

27.

28.

29.

30.

31.

32.
33.
34.

3s.

36.

37.
38.

39.

41.

Learned. In J. Psotka, L.D. Massey and S.A. Mutter (Eds.), Intelligent Tutoring Systems: Les-
sons Learned, Lawrence Erlbaum Associates, Hillsdale, NJ.

Masscy, L. D., de Bruin, J., and Roberts, B. (1988). A training system for system maintenance.
In J. Psotka, L.D. Massey and S.A. Mutter (Eds.), Intelligent Tutoring Systems: Lessons
Learned, Lawrence Erlbaum Associates, Hillsdale, NJ.

Miller, J. R. (1988). Human-Computer interaction and intelligent tutoring systems. In Foun-
dations of ITSs, Polson and Richardson, Eds. Lawrence Erlbaum Associates, Hillsdale, NJ.

Miller, R. A. (1985). A systems approach to modeling discrete control performance. In W. B.
Rouse (Ed.), Advances in Man-Machine Systems Research Vol. I1. JAI Press Inc., Greenwich,
CT.

Moran, T. P. (1983). Getting into a system: external-internal task mapping analysis. Proceed-
ings of the ACM - CHI Conference on Human Factors in Computing Systems. Boston, MA,
pp 45-49, 1983.

Mitchell, C. M., and Miller, R. A. (1986). A discrete control model of operator function: A
methodology for information display design. IEEE Transactions on System, Man, and Cyber-
netics, vol. SMC-16(3), pp. 343-357.

Munro, A., and Towne, D. M. (1993, in press). Chapter in D. M. Towne, T. de Jong, and H.
Spada (Eds.) The Use of Computer Models for Explication, Analysis and Experiential Learn-
ing. NATO ASI Series F, Programme AET, Springer-Verlag, Heidelberg.

Naval Training Command (1973). Engineering Administration. United States Government
Printing Office, Washington D.C.

Nii, H. P. (1986). Blackboard systems. Al Magazine, vol. 7-2 and 7-3.
Nilsson, N. J. (1980). Principles of Artificial Intelligence. Tioga, Palo Alto, CA.

Psotka, J., Massey, L. D., and Mutter, S. A. (Eds.) (1988). Intelligent Tutoring Systems: Les-
sons Learned, Lawrence Erlbaum Associates, Hillsdale, New Jersey.

Rasmussen, J. (1985). The role of hierarchical knowledge representation in decision making
and system management. IEEE Transactions on System, Man, and Cybernetics, vol. SMC-
15(2), pp. 234-243.

Rasmussen, J. (1986). Information processing and human machine interaction: An approach
to cognitive engineering, North-Holland, New York, NY.

Rich, E. (1983). Artificial Intelligence. McGraw-Hill, New York.

Rickel, J.W. (1989). Intelligent Computer-Aided Instruction: A survey Organized Around

System Components. IEEE Transactions on Systems, Man, and Cybernetics, vol 19, No. 1, pp.
40-57.

Rouse, W. B. (1982). Models of human problem solving: Detection, diagnosis and compen-
sation for system failures. Automatica, vol. 19, pp. 613-625.

Sheridan, T. B., and Johannsen, G. (Eds.) (1976). Monitoring behavior and supervisory con-
trol, Plenum, New York, NY.

Sleeman, D., and Brown, J. S., (Eds.) (1982). Intelligent tutoring systems, Academic Press,
Orlando, FL.

43

42,

43.

45.

47.

48.

49.

50.

51.
52.

53.

54.

Su, Y.-L. (1985). Modeling fault diagnosis performance on a marine power plant simulator.
Doctoral dissertation, Center for Human-Machine Systems Research, School of Industrial and
Systems Engineering, Georgia Institute of Technology, Atlanta, GA.

Towne, D. M., and Munro, A. (1988). Intelligent maintenance training system. In J. Psotka,
L. D. Massey and S. A. Mutter (Eds.), Intelligent Tutoring Systems: Lessons Learned,
Lawrence Erlbaum Associates, Hillsdale, NJ.

Towne, D. M., and Munro, A. (1990). Model-building tools for simulation based training. In
Interactive learning environments, 1, pp. 33-50.

Towne, D. M. (1986). The generalized maintenance trainer: Evolution and revolution. In W.
B. Rouse (Ed.), Advances in Man-Machine Systems Research Vol. 111, JAI Press Inc. Green-
wich, CT.

Vasandani, V. (1991). Intelligent Tutoring for Diagnostic Problem Solving in Complex Dy-
namic Systems. Doctoral dissertation, Center for Human- Machine Systems Research, School
of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA.

Vasandani, V., and Govindaraj, T. (1993, in press). Knowledge structures for a computer-
based training aid for troubleshooting a complex system. In D. M. Towne, T. de Jong, and H.
Spada (Eds.) The Use of Computer Models for Explication, Analysis and Experiential Learn-
ing. NATO ASI Series F, Programme AET, Springer-Verlag, Heidelberg.

Vasandani, V., and Govindaraj, T. (1993b). Integration of interactive interfaces with intelli-
gent tutoring systems: an implementation. Submitted for publication.

Wenger, E. (1987). Artificial Intelligence and Tutoring Systems: Computational and Cogni-
tive Approaches to the Communication of Knowledge, Morgan Kaufmann Publishers, Los Al-
tos, CA.

Wickens, C. D. (1984). Engineering psychology and human performance, Charles Merrill,
Columbus, OH.

Winston, P. H. (1980). Artificial Intelligence (Second Ed.). Addison-Wesley, Reading, MA.

Woods, D. D. (1986). Cognitive technologies: The design of joint human-machine cognitive
systems. Al Magazine, pp. 86-92.

Woolf, B. P. (1986). Teaching a complex industrial process. Coins Technical Report 86-24,
Computer and Information Science, University of Massachusetts, Amherst, MA.

Woolf, B. P., and McDonald, D. D. (1984). Building a computer tutor: Design issues. /[EEE
Computer, 17(9), pp. 61-73.

Appendix: Knowledge Representation and Implementation

In Turbinia-Vyasa, components of knowledge are encapsulated using objects. Most of the know!-
edge is represented in a declarative form and is amenable to changes. Procedures that manipulate
data are not stored separately but are mostly encapsulated within the objects. Object-oriented pro-
gramming features such as inheritance and polymorphism have also been effectively employed.
Objects that are instances of the same class have similar representations and share methods that cre-
ate and manipulate data.

Knowledge concerning the thirteen fluid paths is represented in instances of an object class called
FluidPath. FluidPath has six variables: fluid-path-name, in-schematic, in-subsystem, compo-
nents, connectors, and fluid-path-schematic-association. Fluid-path-name stores the name of the
fluid path. Variables in-schematic and in-subsystem store the names of the schematic and sub-
systems in which the fluid path is found. A list of component names that lie along the fluid path is
stored in the variable components and a list of instances of the type connector that represent con-
nections between these components is stored in the variable connectors.

An example of a fluid path in the simulated marine power plant is the fuel oil path. The fuel oil path
is found in fuel oil and boiler schematics. Components that lie along the fuel oil path are fuel oil

settling tank, fuel oil service pump, fuel oil hp regulator, fuel oil heater, fuel oil discharge strainer,
fuel oil control valve, master fuel oil valve and the burner. All except the burner in the fuel oil path
are displayed on the fuel oil schematic. The object *FuelQilPath* is shown in Table Al. Instances
of all the thirteen fluid paths are created prior to run time and are initialized from data in input files.

Table Al. Description of *FuelQilPath*

Object: *FuelOilPath®; Instance of: FluidPath

Instance Variables | Value

fluid-path-name | fuel-oil-path

in-schematic | (fuel-oil-schematic boiler-schematic)

in-subsystem | (combustion-subsystem)

components | (fuel-oil-settling-tank fuel-oil-service-pump fuel-oil-hp-regulator
fuel-oil-heater fuel-oil-discharge-strainer fuel-oil-control-valve
master-fuel-oil-valve burner)
connectors | ((#<connector 4003344> #<connector 4003276> #<connector
4003208> -----eeneenee-)
fluid-path-schematic-association | ((fuel-oil-schematic #<FluidPathStructure WithinSchematic
4043316>) (boiler-schematic
#<FluidPathStructure WithinSchematic 4043116>))

Knowledge concerning the nine subsystems is represented in instances of an object class called
FunctionalSubsystem. FunctionalSubsystem has seven variables: subsystem-name, in-sche-
matic, fluid-paths, components, connectors, function and subsystem-schematic-association.

An example of a functional subsystem in the simulated marine power plant is the combustion sub-
system. The combustion subsystem spans over the fuel oil and boiler schematics. In the fuel oil
schematic, the combustion subsystem has only fuel oil flowing through it. In the boiler schematic,
the combustion subsystem has fuel oil as well as combustion air fluid paths in it. The combustion
subsystem is comprised of fuel oil settling tank, fuel oil service pump, fuel oil hp regulator, fuel oil
heater, fuel oil discharge strainer, fuel oil controi valve, and the master fuel oil valve in the fuel oil
schematic; and forced draft fan, air heater, windbox, air register and the burner in the boiler sche-

45

matic. Of the components in boiler schematic, the burner is located in the fuel oil path and the rest
lie along the combustion air path. The *CombustionSubsystem* object is shown in Table A2. In-
stances of all the nine functional subsystems are created prior to run time and are initialized from
data in input files.

Table A2. Description of *CombustionSubsystem*

Object: *CombustionSubsystem®; Instance of: FuntionalSubsystem

Instance Variables | Value

subsystem-name | combustion-subsystem

in-schematic | (boiler-schematic fuel-oil-schematic)

fluid-paths | (fuel-oil-path combustion-air-path)

components | (fuel-oil-settling-tank fuel-oil-service-pump fuel-oil-hp-regulator
fuel-oil-heater fuel-oil-discharge-strainer fuel-oil-control-valve
master-fuel-oil-valve forced-draft-fan air-heater windbox air-
register burner)
connectors | (#<connector 4020096> #<connector 4020028> ----)

function | "To mix the combustion-air with fuel and ignite it in the burner

to release thermal energy”
subsystem-schematic-association | ((fuel-oil-schematic #<SubsystemStructure WithinSchematic
4042304>) (boiler-schematic
#<SubsystemStructureWithinSchematic 4042504>))

Object: #<4042504>; Instance of: SubsystemStructureWithinSchematic

fluid-paths | (fuel-oil-path combustion-air-path)
components | (forced-draft-fan air-heater windbox air-register burner)
connectors | (#<connector 4020028> #<connector 4020640> ----)
subsystem-fluid-path-association | ((combustion-air-path #<SubsystemStructure WithinFluidPath
3773792>) (fuel-oil-path #<SubsystemStructure WithinFluidPath
3773992>))

Object: #<3773992>; Instance of: SubsystemStructureWithinFluidPath

components | (burner)
connectors | (#<connector 4020708>)

Knowledge concerning the seven schematics is represented in instances of an object class called
Schematic. Table A3 shows *BoilerSchematic*, an instance of Schematic with most of its in-
stance variables initialized from an input data file. Schematic has seventeen class variables which
are described in the table.

All components are instances of classes of objects defined by the primitive class hierarchy (see Fig-

Table A3. Description of *BoilerSchematic*

Object: *BoilerSchematic®; Instance of: Schematic

Instance Variables

Value

ccl-window

title

schematic-name
components-in-schematic

fluid-paths-in-schematic
subsystems-in-schematic
list-of-graphic-components

list-of-graphic-connectors
list-of-graphic-icons

list-of-visible-graphic-gauges
list-of-graphic-gauge-readings

picture-handle
high-lighs-function
low-light-function
buston-event-function
list-of-active-regions
pick-region

#<Object #280, "boiler-schematic”, a *color-window*>
"boiler-schematic”

boiler-schematic

(ac-valve windbox tubes super-steam superheater stack feed-
water-regulator fumace forced- draft-fan economizer drum desuper-
steam desuperheater burner attemperator atmosphere air-register
air-heater ad-drive air-damper)

(control-air steam desuperheated-steam superheated steam flue-
gas feed-water fuel-oil combustion-air)

(control-air-subsystem steam-generation-subsystem combustion-
subsystem)

(#<GeneralGraphicObject4002864> #<GeneralGraphicObject
4002656> ---------)

(#<connector 4005248> #<connector 4005180> -----)
(#<SchematicIconGraphicObject 4006436>
#<SchematiclconGraphicObject 4006636>--------)
(#<GaugelconGraphicObject 4005736> #<GaugelconGraphicObject
4005936> ----)

(#<GeneralGraphicObject 40053 16> #<GeneralGraphicObject
4005516> ~-~-e--)

#<Mac Handle, Unlocked, Size 2512 #x1DESB8>
#<Compiled-function active-regions/default-high-light-fn>
#<Compiled-function active-regions/default-low-light-fn>
#<Compiled-function active-regions/button-event-fn>
(#<ActiveRegion 4005392> #<ActiveRegion 4005532> -------)
(#<ActiveRegion 4000416>)

ure 4). These components are instantiated prior to run time using a data file that contains structural,
functional, behavioral information about components along with knowledge of failures in the com-

At the top of the primitive class hierarchy is an object class called Primitive. The nine class vari-
ables of Primitive are shown in Table A4. Values attached to these variables define the structure,
function and behavior of the instantiated object.

The three types of gauges in Turbinia: pressure, temperature and level, are instances of Gauge.
The seven variables of Gauge are described in Table AS. Three of these variables store information
related to a gauge such as its type, number, and reading. The names of components on either side
of the gauge, and the resource ID of the gauge-icon that represents it are also stored in the instance

47

Table A4. Description of Object Class Primitive

Class: Primitive
All components are instances of Primitive or its subclasses

Class Variables | Description

linked-graphic-objects list of paired associations. Each pair contains the name of a schematic and
an instance of GeneralGraphicObject that represents the primitive in the
schematic.
general-structure | contains an instance of PrimitiveGeneralStructure
specific-structure | contains an instance of PrimitiveSpecificStructure
Junction describes the function of the primitive
propagation-behavior | pointer to an appropriate propagate-states method
update-states-behavior | pointer to an appropriate update-states method
normal-behavior | instance of NormalBehaviorProperties
abnormal-behavior | list of instances of AbnormalBehavior
failures | pointers to instances of SpecificFailureCase

variables of a gauge.

Table AS. Description of Object Class Gauge

Class: Gauge

Class Variables | Description

type | pressure, temperature, flow or level
gauge-number | gauge number
on-input-side-of-components | components that have the gauge on their input side

on-output-side-of-components | components that have the gauge on their output side

gauge-reading | gaugeTeading

gauge-icon-id | resource ID of icon that represents the gauge

linked-graphic-objects | list of paired associations. Each pair contains the name of a

schematic and an instance of GaugeGraphicObject that represents
the gauge in the schematic.

Representation of failure knowledge in Vyasa is discussed next. There are two types of represen-
tations used for failure knowledge: one to represent general abnormal system behavior associated
with each failure mode and the other to represent specific failures.

The system behavior associated with component failure modes is described in instances of Failure-
Mode class of objects (Tables A6, A7). There are four failure-mode objects, one for each of the
four failure types: blocked-shut, stuck-open, leak-in, and leak-out. Knowledge about a failure mode
represented in these objects includes information about the upstream and downstream system be-
havior along the gas and liquid paths, the name of the failure mode and the resource ID of the icon
used to represent the failure mode.

Knowledge of the individual faults in the component is stored in objects of class SpecificFailure-
Case. Variables of SpecificFailureCase are described in Table A8.

Table A6. Description of Object Class FailureMode

Class: FallureMode
Class Variables | Description
name | name of failure mode
icon | resource ID of icon that represents the failure mode
gas | aninstance of ExpectedAbnormalBehavior
liquid | an instance of ExpectedAbnormalBehavior

Table A7. Description of Object Class ExpectedAbnormalBehavior

Class: ExpectedAbnormalBehavior

Class Variables

Description

upstream-behavior
downstream-behavior
upstream-behavior-limited-by
downstream-behavior-limited-by

list of affected state upstream and its qualitative value

list of affected state downstream and its qualitative value
primitives upstream that curtail propagation of abnormal behavior
primitives downstream that curtail propagation of abnormal
behavior

Table A8. Description of Object Class SpecificFailureCase

Class: SpecificFallureCase

Class Variables Description
Jailure-number | anumber given to failure. Each failure is identified by this
number
symptom symptoms initially observed
cause name of the failed component
Jailure-mode mode of failure

upstream-behavior
downstream-behavior
upstream-behavior-limited-by

downstream-behavior-limited-by
upstream-behavior-gauge
downstream-behavior-gauge

affected-subsystems
affected-fluid-paths
affected-schematics
affected-components
affected-gauges
hypothesis-strengthening-tests
hypothesis-weakening-tests

upstream affected state and its qualitative value
downstream affected state and its qualitative value
component upstream that curtails propagation of abnormal
behavior

component downstream that curtails propagation of abnormal
behavior

upstream gauge number and its qualitative value that shows
the abnormal system behavior

downstream gauge number and its qualitative value that
shows the abnormal system behavior

names of affected subsystems

names of affected fluid paths

names of affected schematics

names of affected components

affected gauges along with cause-effect explanations
diagnostic tests that strengthen the belief in this failure
diagnostic tests that strengthen the belief in this failure

49

Each instance of SpecificFailureCase contains information relevant to the failure such as the
symptom, the name of the failed component and the mode of failure. The expected upstream and
downstream abnormal system behavior due to the fault, the gauges that show this behavior, and the
names of the components that curtail the propagation of this behavior away from the malfunction-
ing component are also stored within the object. In addition, the encapsulated knowledge of spe-
cific failures includes information concerning affected schematics, subsystems, fluid paths, and
gauges along with explanations of cause-effect associations (see Table A9). The diagnostic tests
that strengthen or weaken the likelihood of this specific failure are also stored along with the rest
of the information. Details of the gauge readings and information used for end-of-problem help are
shown in Table A10.

Table A9. Description of Failure Two

Object: *FailureTwo*; Instance of: SpecificFailureCase

Instance Variables

Value

Jfailure-number

symptom

cause

Jailure-mode
upstream-behavior
downstream-behavior
upstream-behavior-limited-by
downstream-behavior-limited-by
upstream-behavior-gauge
downstream-behavior-gauge
affected-subsystems

affected-fluid-paths

affected-schematics
affected-components
affected-gauges

hypothesis-strengthening-tests
hypothesis-weakening-tests

2

"When speeding up the ship, boiler level drops low"
"Feed-water regulator is stuck closed"

"blocked-shut”

((flow-or-level high))

((flow-or-level low))

(deaerating-feed-tank)

(deaerating-feed-tank)

(#<flow-or-level-gauge 3955028> high)
(#<flow-or-level-gauge 3939780> low)
(feed-water-preheating-subsystem steam-generation-subsystem
combustion-subsystem power-generation-subsystem steam-
condensation-subsystem)

(feed-water flue-gas combustion-air superheated-steam
desuperheated-steam steam main-condenser-hot-fluid main-
condenser-cold-fluid condensate)

(steam-schematic boiler-schematic feed-water-schematic)
(drum tubes economizer superheater)

affected gauges a'ong with cause-effect explanations is shown
on the next page

((56 low) (58 high))

((56 normal) (56 high) (58 normal) (58 low))

50

Table A10. Details of Failure Two

List of affected gauges along with cause-effect explanations for *FailureTwo*

((58 (slightly-high high) “The speed of the ship is increased by increasing the mass flow rate of steam
to the turbines. When the steam demand from the boiler increases, the steam pressure in the drum
decreases. This sets the boiler combustion control mechanism into operation. The job of the combustion
control mechanism is to increase the quantity of combustion air and fuel to the boiler. Also, when the
mass flow rate of steam from the boiler is increased, the boiler feed water control mechanism has to
adjust the flow rate of feed water to maintain a mass balance of flow into and out of the boiler. When
the feed water regualtor is stuck, the feed water control mechanism is unable to increase the feed water
flow rate. Such a failure may be regarded as an example of a blocked shut valve. Because the feed-
water-regulator does not permit an increase in the feed water flow rate, the upstream water level in the
deaerating-feed-tank rises above the normal value.")

(56 (low) "The blocked-shut feed-water-regulator causes the water level in the steam

drum, downstream, to fall below the normal level.") (7 (slightly-low) “The steam pressure in the boiler
drum also decreases when the steam demand is increased. The steam pressure decreases further as the
level of water in the drum continues to fall. The combustion control mechanism tries to increase the
steam generation rate to build up the steam pressure. Even then the steam saturation pressure in the
drum may remain below normal.")

(64 (slightly-high) "Since the water level in the drum continues to fall, the saturation

pressure of steam in the drum keeps on decreasing. The combustion control mechanism tries to
increase the steam generation rate to build up the steam pressure. Therefore, the fuel oil flows into the
burner at a rate which is higher than the normal rate for this operating condition.”)

(1 (slightly-high) "The combustion control mechanism is also responsible for pumping more airinto
the burner to support combustion of excess fuel."”)

(66 (slighty-low) "As the fuel flow rate is increased, the flow level in the settling tank falls below
normal.”)

(2 (slightly-high) "The higher than normal combustion air pressure propagates towards the bumer.")
(3 (slightly-high) "The higher than normal combustion air pressure propagates past the burner.")

(46 (high) "Since the available heat energy is now used to heat less feed water, more heat is consumed
in superheating steam at constant pressure in the superheater.”)

(44 (slightly-high) "Since the available heat energy is now used to heat less feed-water in the economizer,
the feed-water temperature at drum input is higher than normal")

(42 (slightly-high) "With less feed-water to heat in the economizer, the flue gas temperature at the air-
heater outlet rises")

(48 (slightly-high) "Higher flue-gas temperature causes an increase in combustion-air temperature
during preheating in the air-heater”)

(45 (slightly-high high) "Higher superheated-steam temperature propagates to desuperheater as higher
desuperheated-steam temperature™)

(61 (fluctuating) "Level fluctuates in the deaerating-feed-tank--distillate-tank--atmos-drain-tank feed-
back loop to compensate for level variations in the deaerating-feed-tank")

(67 (fluctuating) "Level fluctuates in the deaerating-feed-tank--distillate-tank--atmos-drain-tank feed-
back loop to compensate for level variations in the deaerating-feed-tank™)

(55 (slighty-high high) "The higher superheated-steam temperature also causes the steam temperature
at Ip-turbine exit to be higher than normal"))

51

